1
|
Jingjing MA. Three-input logic gate based on DNA strand displacement reaction. Sci Rep 2023; 13:15210. [PMID: 37709846 PMCID: PMC10502070 DOI: 10.1038/s41598-023-42383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023] Open
Abstract
In this paper, three kinds of three-input logic gates are designed based on DNA strand displacement reaction, which are three-input OR logic gate, three-input AND logic gate, and three-input MAJORITY logic gate. The logic gates designed in this paper takes different DNA strands as input and fluorescence signals as output. The biochemical experimental results verify my designs. The results show that DNA strand displacement technology has important application value in DNA computing, especially in the construction of DNA molecular logic gates.
Collapse
Affiliation(s)
- M A Jingjing
- School of Statistics, Shanxi University of Finance and Economy, Taiyuan, 030000, China.
| |
Collapse
|
2
|
Kogikoski S, Ameixa J, Mostafa A, Bald I. Lab-on-a-DNA origami: nanoengineered single-molecule platforms. Chem Commun (Camb) 2023; 59:4726-4741. [PMID: 37000514 PMCID: PMC10111202 DOI: 10.1039/d3cc00718a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 04/01/2023]
Abstract
DNA origami nanostructures are self-assembled into almost arbitrary two- and three-dimensional shapes from a long, single-stranded viral scaffold strand and a set of short artificial oligonucleotides. Each DNA strand can be functionalized individually using well-established DNA chemistry, representing addressable sites that allow for the nanometre precise placement of various chemical entities such as proteins, molecular chromophores, nanoparticles, or simply DNA motifs. By means of microscopic and spectroscopic techniques, these entities can be visualized or detected, and either their mutual interaction or their interaction with external stimuli such as radiation can be studied. This gives rise to the Lab-on-a-DNA origami approach, which is introduced in this Feature Article, and the state-of-the-art is summarized with a focus on light-harvesting nanoantennas and DNA platforms for single-molecule analysis either by optical spectroscopy or atomic force microscopy (AFM). Light-harvesting antennas can be generated by the precise arrangement of chromophores to channel and direct excitation energy. At the same time, plasmonic nanoparticles represent a complementary approach to focus light on the nanoscale. Plasmonic nanoantennas also allow for the observation of single molecules either by Raman scattering or fluorescence spectroscopy and DNA origami platforms provide unique opportunities to arrange nanoparticles and molecules to be studied. Finally, the analysis of single DNA motifs by AFM allows for an investigation of radiation-induced processes in DNA with unprecedented detail and accuracy.
Collapse
Affiliation(s)
- Sergio Kogikoski
- Institute of Chemistry, Hybrid Nanostructures, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - João Ameixa
- Institute of Chemistry, Hybrid Nanostructures, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - Amr Mostafa
- Institute of Chemistry, Hybrid Nanostructures, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - Ilko Bald
- Institute of Chemistry, Hybrid Nanostructures, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| |
Collapse
|
3
|
Cervantes-Salguero K, Freeley M, Gwyther REA, Jones DD, Chávez JL, Palma M. Single molecule DNA origami nanoarrays with controlled protein orientation. BIOPHYSICS REVIEWS 2022; 3:031401. [PMID: 38505279 PMCID: PMC10903486 DOI: 10.1063/5.0099294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/20/2022] [Indexed: 03/21/2024]
Abstract
The nanoscale organization of functional (bio)molecules on solid substrates with nanoscale spatial resolution and single-molecule control-in both position and orientation-is of great interest for the development of next-generation (bio)molecular devices and assays. Herein, we report the fabrication of nanoarrays of individual proteins (and dyes) via the selective organization of DNA origami on nanopatterned surfaces and with controlled protein orientation. Nanoapertures in metal-coated glass substrates were patterned using focused ion beam lithography; 88% of the nanoapertures allowed immobilization of functionalized DNA origami structures. Photobleaching experiments of dye-functionalized DNA nanostructures indicated that 85% of the nanoapertures contain a single origami unit, with only 3% exhibiting double occupancy. Using a reprogrammed genetic code to engineer into a protein new chemistry to allow residue-specific linkage to an addressable ssDNA unit, we assembled orientation-controlled proteins functionalized to DNA origami structures; these were then organized in the arrays and exhibited single molecule traces. This strategy is of general applicability for the investigation of biomolecular events with single-molecule resolution in defined nanoarrays configurations and with orientational control of the (bio)molecule of interest.
Collapse
Affiliation(s)
- K. Cervantes-Salguero
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - M. Freeley
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - R. E. A. Gwyther
- Division of Molecular Biosciences, School of Biosciences, Main Building, Cardiff University, Cardiff, Wales, United Kingdom
| | - D. D. Jones
- Division of Molecular Biosciences, School of Biosciences, Main Building, Cardiff University, Cardiff, Wales, United Kingdom
| | - J. L. Chávez
- Air Force Research Laboratory, 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, Ohio 45433-7901, USA
| | - M. Palma
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
4
|
Keller A, Linko V. Challenges and Perspectives of DNA Nanostructures in Biomedicine. Angew Chem Int Ed Engl 2020; 59:15818-15833. [PMID: 32112664 PMCID: PMC7540699 DOI: 10.1002/anie.201916390] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/26/2020] [Indexed: 01/12/2023]
Abstract
DNA nanotechnology holds substantial promise for future biomedical engineering and the development of novel therapies and diagnostic assays. The subnanometer-level addressability of DNA nanostructures allows for their precise and tailored modification with numerous chemical and biological entities, which makes them fit to serve as accurate diagnostic tools and multifunctional carriers for targeted drug delivery. The absolute control over shape, size, and function enables the fabrication of tailored and dynamic devices, such as DNA nanorobots that can execute programmed tasks and react to various external stimuli. Even though several studies have demonstrated the successful operation of various biomedical DNA nanostructures both in vitro and in vivo, major obstacles remain on the path to real-world applications of DNA-based nanomedicine. Here, we summarize the current status of the field and the main implementations of biomedical DNA nanostructures. In particular, we focus on open challenges and untackled issues and discuss possible solutions.
Collapse
Affiliation(s)
- Adrian Keller
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Veikko Linko
- Biohybrid MaterialsDepartment of Bioproducts and BiosystemsAalto UniversityP. O. Box 1610000076AaltoFinland
- HYBER CentreDepartment of Applied PhysicsAalto UniversityP. O. Box 1510000076AaltoFinland
| |
Collapse
|
5
|
Kielar C, Zhu S, Grundmeier G, Keller A. Quantitative Assessment of Tip Effects in Single-Molecule High-Speed Atomic Force Microscopy Using DNA Origami Substrates. Angew Chem Int Ed Engl 2020; 59:14336-14341. [PMID: 32485088 PMCID: PMC7496922 DOI: 10.1002/anie.202005884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Indexed: 01/19/2023]
Abstract
High-speed atomic force microscopy (HS-AFM) is widely employed in the investigation of dynamic biomolecular processes at a single-molecule level. However, it remains an open and somewhat controversial question, how these processes are affected by the rapidly scanned AFM tip. While tip effects are commonly believed to be of minor importance in strongly binding systems, weaker interactions may significantly be disturbed. Herein, we quantitatively assess the role of tip effects in a strongly binding system using a DNA origami-based single-molecule assay. Despite its femtomolar dissociation constant, we find that HS-AFM imaging can disrupt monodentate binding of streptavidin (SAv) to biotin (Bt) even under gentle scanning conditions. To a lesser extent, this is also observed for the much stronger bidentate SAv-Bt complex. The presented DNA origami-based assay can be universally employed to quantify tip effects in strongly and weakly binding systems and to optimize the experimental settings for their reliable HS-AFM imaging.
Collapse
Affiliation(s)
- Charlotte Kielar
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Str. 10033098PaderbornGermany
- Present address: Institute of Resource EcologyHelmholtz-Zentrum Dresden-RossendorfBautzner Landstraße 40001328DresdenGermany
| | - Siqi Zhu
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| | - Guido Grundmeier
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| | - Adrian Keller
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| |
Collapse
|
6
|
Kielar C, Zhu S, Grundmeier G, Keller A. Quantitative Assessment of Tip Effects in Single‐Molecule High‐Speed Atomic Force Microscopy Using DNA Origami Substrates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Charlotte Kielar
- Technical and Macromolecular Chemistry Paderborn University Warburger Str. 100 33098 Paderborn Germany
- Present address: Institute of Resource Ecology Helmholtz-Zentrum Dresden-Rossendorf Bautzner Landstraße 400 01328 Dresden Germany
| | - Siqi Zhu
- Technical and Macromolecular Chemistry Paderborn University Warburger Str. 100 33098 Paderborn Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry Paderborn University Warburger Str. 100 33098 Paderborn Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry Paderborn University Warburger Str. 100 33098 Paderborn Germany
| |
Collapse
|
7
|
Mende M, Tsouka A, Heidepriem J, Paris G, Mattes DS, Eickelmann S, Bordoni V, Wawrzinek R, Fuchsberger FF, Seeberger PH, Rademacher C, Delbianco M, Mallagaray A, Loeffler FF. On-Chip Neo-Glycopeptide Synthesis for Multivalent Glycan Presentation. Chemistry 2020; 26:9954-9963. [PMID: 32315099 PMCID: PMC7496964 DOI: 10.1002/chem.202001291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/17/2020] [Indexed: 11/11/2022]
Abstract
Single glycan-protein interactions are often weak, such that glycan binding partners commonly utilize multiple, spatially defined binding sites to enhance binding avidity and specificity. Current array technologies usually neglect defined multivalent display. Laser-based array synthesis technology allows for flexible and rapid on-surface synthesis of different peptides. By combining this technique with click chemistry, neo-glycopeptides were produced directly on a functionalized glass slide in the microarray format. Density and spatial distribution of carbohydrates can be tuned, resulting in well-defined glycan structures for multivalent display. The two lectins concanavalin A and langerin were probed with different glycans on multivalent scaffolds, revealing strong spacing-, density-, and ligand-dependent binding. In addition, we could also measure the surface dissociation constant. This approach allows for a rapid generation, screening, and optimization of a multitude of multivalent scaffolds for glycan binding.
Collapse
Affiliation(s)
- Marco Mende
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Alexandra Tsouka
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimalle 2214195BerlinGermany
| | - Jasmin Heidepriem
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimalle 2214195BerlinGermany
| | - Grigori Paris
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Daniela S. Mattes
- Institute of Microstructure TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Stephan Eickelmann
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Vittorio Bordoni
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Robert Wawrzinek
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Felix F. Fuchsberger
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimalle 2214195BerlinGermany
| | - Christoph Rademacher
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Martina Delbianco
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Alvaro Mallagaray
- Institut für Chemie und MetabolomicsUniversität zu LübeckRatzeburger Allee 16023562LübeckGermany
| | - Felix F. Loeffler
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| |
Collapse
|
8
|
Keller A, Linko V. Herausforderungen und Perspektiven von DNA‐Nanostrukturen in der Biomedizin. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Adrian Keller
- Technische und Makromolekulare Chemie Universität Paderborn Warburger Straße 100 33098 Paderborn Deutschland
| | - Veikko Linko
- Biohybrid Materials Department of Bioproducts and Biosystems Aalto University P. O. Box 16100 00076 Aalto Finnland
- HYBER Centre Department of Applied Physics Aalto University P. O. Box 15100 00076 Aalto Finnland
| |
Collapse
|
9
|
Liu B, Sun H, Li L, Zhang J, Kong J, Zhang X. A dual signal amplification strategy combining thermally initiated SI-RAFT polymerization and DNA-templated silver nanoparticles for electrochemical determination of DNA. Mikrochim Acta 2019; 187:35. [PMID: 31820104 DOI: 10.1007/s00604-019-3912-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Abstract
A highly sensitive method is described for determination of DNA. It is based on dual signal amplification, viz. (a)DNA-templated metal deposition, and (b) thermally initiated surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization. A peptide nucleic acid (PNA) with a terminal thiol group was grasped onto a gold electrode by self-assembly. The modified electrode serves as a probe to selectively capture target DNA (tDNA). In the next step, Zr(IV) ions are bound to the phosphate groups of the tDNA. A chain-transfer agent (CTA) for thermally initiated SI-RAFT polymerization, 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid (CPAD), was immobilized on tDNA by conjugation of the carboxy group to Zr(IV) ions. Subsequently, numerous monomers of glycosyloxyethyl methacrylate (GEMA) were connected to the CPAD by thermally initiated SI-RAFT polymerization with azobisisobutyronitrile (AIBN) serving as the free-radical thermal initiator. Afterwards, hydroxyl groups of the GEMA were oxidized to aldehyde groups reacting with sodium periodate, and silver nanoparticles were further introduced on the surface of electrode via "silver mirror reaction". This results in a large electrochemical signal amplification. Under optimized conditions, the electrochemical signal (best measured at a working potential of 0 V vs. SCE (KCl; 3 M)) increases linearly with the logarithm of tDNA concentration in the 10 to 106 aM concentration range. The detection limit is as low as 5.6 aM (~34 molecules in a 10 μL sample). This is lower by factors between 2 and 1800 times than detection limits of most other ultra-sensitive electrochemical DNA assays. Graphical abstractSchematic representation of a dual signal amplification strategy combining thermally initiated surface-initiated reversible addition-fragmentation chain transfer polymerization (SI-RAFT) and DNA-templated silver nanoparticles for electrochemical determination of DNA.
Collapse
Affiliation(s)
- Bang Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, People's Republic of China
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Qixia District, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Haobo Sun
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, People's Republic of China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Jian Zhang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Qixia District, Nanjing, 210028, Jiangsu Province, People's Republic of China.
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, People's Republic of China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, People's Republic of China
| |
Collapse
|