1
|
A. Gomes RF, Ravasco JMJM, Andrade KHS, Coelho JAS, Moreira R, Oliveira R, Nogueira F, Afonso CAM. Tandem Thio-Michael Addition/Remote Lactone Activation of 5-Hydroxymethylfurfural-Derived δ-Lactone-Fused Cyclopentenones. CHEMSUSCHEM 2022; 15:e202102204. [PMID: 35040553 PMCID: PMC9401029 DOI: 10.1002/cssc.202102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Indexed: 06/14/2023]
Abstract
The creation of structurally diverse chemical entities from fairly simple biorefinery products remains a challenge. In this work 5-hydroxymethylfurfural (HMF) was identified as a key synthon for preparing highly complex cyclopentenones (CP) via tandem 1,4-addition/elimination/remote lactone activation to external O- and N-nucleophiles in δ-lactone-fused-CPs hotspots. This scaffold was also reactive enough to be incorporated into model cysteine-peptides in low concentrations, paving the way to a potential translation generating complexity in the synthesis of small peptides. The new enones also exhibited activity against intraerythrocytic Plasmodium falciparum (IC50 =1.32 μm).
Collapse
Affiliation(s)
- Rafael F. A. Gomes
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| | - Joao M. J. M. Ravasco
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| | - Késsia H. S. Andrade
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| | - Jaime A. S. Coelho
- Centro de Química Estrutural, Institute of Molecular SciencesFaculdade de CiênciasUniversidade de LisboaCampo Grande1749-016LisboaPortugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| | - Rafael Oliveira
- Global Health and Tropical MedicineGHTMInstituto de Higiene e Medicina TropicalIHMTUniversidade NOVA de LisboaUNLRua da Junqueira, 101349-008LisboaPortugal
- Institute of Tropical Medicine and International HealthCharité – Charité-Universitätsmedizin BerlinAugustenburger Platz 1 (Campus Adress: Südring 2–3)13353BerlinGermany
| | - Fátima Nogueira
- Global Health and Tropical MedicineGHTMInstituto de Higiene e Medicina TropicalIHMTUniversidade NOVA de LisboaUNLRua da Junqueira, 101349-008LisboaPortugal
| | - Carlos A. M. Afonso
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| |
Collapse
|
2
|
Shpinov Y, Schlichter A, Pelupessy P, Le Saux T, Jullien L, Adelizzi B. Unexpected Acid-Triggered Formation of Reversibly Photoswitchable Stenhouse Salts from Donor-Acceptor Stenhouse Adducts. Chemistry 2022; 28:e202200497. [PMID: 35218266 DOI: 10.1002/chem.202200497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 01/12/2023]
Abstract
Donor-acceptor Stenhouse adducts (DASAs) are reversibly photoswitchable dyes, which are able to interconvert between a red/NIR absorbing triene-like state and a colorless cyclic state. Although optically attractive for multiple applications, their low solubility and lack of photoswitching in water impede their use in aqueous environments. We developed water-soluble DASAs based on indoline as donor and methyl, or trifluoromethyl, pyrazolone-based acceptors. In acetonitrile, photophysical analysis and photochemical studies, accounted with a three-state kinetic model, confirmed the reversible photoswitching mechanism previously proposed. In water, the colorless cyclic state is a thermodynamic sink at neutral pH values. In contrast, in acidic conditions, we observed a fast scrambling of DASAs' end-group resulting in the in situ formation of Stenhouse salts (StS), which are in turn capable of reversible photoswitching. We believe that this unexpected result is of interest not only for the future design of DASAs with improved stability, but also for further development and applications of StS as photoswitchable probes.
Collapse
Affiliation(s)
- Yuriy Shpinov
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Antoine Schlichter
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Philippe Pelupessy
- Laboratoire de biomolécules (LBM), Département de chimie, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005, Paris, France
| | - Thomas Le Saux
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Ludovic Jullien
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Beatrice Adelizzi
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| |
Collapse
|
3
|
Wu H, Chen Z, Chi W, Bindra AK, Gu L, Qian C, Wu B, Yue B, Liu G, Yang G, Zhu L, Zhao Y. Structural Engineering of Luminogens with High Emission Efficiency Both in Solution and in the Solid State. Angew Chem Int Ed Engl 2019; 58:11419-11423. [DOI: 10.1002/anie.201906507] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Hongwei Wu
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University Shanghai 200438 China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Zhao Chen
- School of Computer Science and TechnologyDonghua University Shanghai 201620 China
| | - Weijie Chi
- Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Anivind Kaur Bindra
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Long Gu
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Cheng Qian
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Bing Wu
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University Shanghai 200438 China
| | - Bingbing Yue
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University Shanghai 200438 China
| | - Guofeng Liu
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Guangbao Yang
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University Shanghai 200438 China
| | - Yanli Zhao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
4
|
Wu H, Chen Z, Chi W, Bindra AK, Gu L, Qian C, Wu B, Yue B, Liu G, Yang G, Zhu L, Zhao Y. Structural Engineering of Luminogens with High Emission Efficiency both in Solution and in the Solid State. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hongwei Wu
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University Shanghai 200438 China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Zhao Chen
- School of Computer Science and TechnologyDonghua University Shanghai 201620 China
| | - Weijie Chi
- Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Anivind Kaur Bindra
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Long Gu
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Cheng Qian
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Bing Wu
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University Shanghai 200438 China
| | - Bingbing Yue
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University Shanghai 200438 China
| | - Guofeng Liu
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Guangbao Yang
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University Shanghai 200438 China
| | - Yanli Zhao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
5
|
Chen L, Chen D, Jiang Y, Zhang J, Yu J, DuFort CC, Hingorani SR, Zhang X, Wu C, Chiu DT. A BODIPY-Based Donor/Donor-Acceptor System: Towards Highly Efficient Long-Wavelength-Excitable Near-IR Polymer Dots with Narrow and Strong Absorption Features. Angew Chem Int Ed Engl 2019; 58:7008-7012. [PMID: 30912228 PMCID: PMC6513679 DOI: 10.1002/anie.201902077] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Indexed: 12/25/2022]
Abstract
Bright long-wavelength-excitable semiconducting polymer dots (LWE-Pdots) are highly desirable for in vivo imaging and multiplexed in vitro bioassays. LWE-Pdots have been obtained by incorporating a near-infrared (NIR) emitter into the backbone of a polymer host to develop a binary donor-acceptor (D-A) system. However, they usually suffer from severe concentration quenching and a trade-off between fluorescence quantum yield (Φf ) and absorption cross-section (σ). Herein, we describe a ternary component (D1 /D2 -A) strategy to achieve ultrabright, green laser-excitable Pdots with narrow-band NIR emission by introducing a BODIPY-based assistant polymer donor as D1 . The D1 /D2 -A Pdots possess improved Φf and σ compared to corresponding binary D2 -A Pdots. Their Φf is as high as 40.2 %, one of the most efficient NIR Pdots reported. The D1 /D2 -A Pdots show ultrahigh single-particle brightness, 83-fold brighter than Qdot 705 when excited by a 532 nm laser. When injected into mice, higher contrast in vivo tumor imaging was achieved using the ternary Pdots versus the binary D-A Pdots.
Collapse
Affiliation(s)
- Lei Chen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United Statet.
| | - Dandan Chen
- Department of Biomedical Engineering, Southern University Science and Technology, Shenzhen, Guangdong 510855, China.
| | - Yifei Jiang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United Statet.
| | - Jicheng Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United Statet.
| | - Jiangbo Yu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United Statet.
| | - Christopher C. DuFort
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Sunil R. Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
- Department of Medicine, University of Washington, Seattle, WA, 98195, United States
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University Science and Technology, Shenzhen, Guangdong 510855, China.
| | - Daniel T. Chiu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United Statet.
| |
Collapse
|
6
|
Chen L, Chen D, Jiang Y, Zhang J, Yu J, DuFort CC, Hingorani SR, Zhang X, Wu C, Chiu DT. A BODIPY‐Based Donor/Donor–Acceptor System: Towards Highly Efficient Long‐Wavelength‐Excitable Near‐IR Polymer Dots with Narrow and Strong Absorption Features. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lei Chen
- Department of ChemistryUniversity of Washington Seattle WA 98195 USA
| | - Dandan Chen
- Department of Biomedical EngineeringSouthern University Science and Technology Shenzhen Guangdong 510855 China
| | - Yifei Jiang
- Department of ChemistryUniversity of Washington Seattle WA 98195 USA
| | - Jicheng Zhang
- Department of ChemistryUniversity of Washington Seattle WA 98195 USA
| | - Jiangbo Yu
- Department of ChemistryUniversity of Washington Seattle WA 98195 USA
| | - Christopher C. DuFort
- Clinical Research DivisionFred Hutchinson Cancer Research Center Seattle WA 98109 USA
| | - Sunil R. Hingorani
- Clinical Research DivisionFred Hutchinson Cancer Research Center Seattle WA 98109 USA
- Public Health Sciences DivisionFred Hutchinson Cancer Research Center Seattle WA 98109 USA
- Department of MedicineUniversity of Washington Seattle WA 98195 USA
| | - Xuanjun Zhang
- Faculty of Health SciencesUniversity of Macau Macau SAR 999078 China
| | - Changfeng Wu
- Department of Biomedical EngineeringSouthern University Science and Technology Shenzhen Guangdong 510855 China
| | - Daniel T. Chiu
- Department of ChemistryUniversity of Washington Seattle WA 98195 USA
| |
Collapse
|
7
|
Kuznetsov DA, Konev DV, Sokolov SA, Fedyanin IV. Cobalt Oxide Materials for Oxygen Evolution Catalysis via Single-Source Precursor Chemistry. Chemistry 2018; 24:13890-13896. [PMID: 30030924 DOI: 10.1002/chem.201802632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 01/30/2023]
Abstract
The utilization of metal alkoxides as single-source precursors for (mixed-)oxide materials offers remarkable benefits, such as the possibility to precisely control the metal ratio in the resulting material, highly homogeneous distribution of the elements in the film, and the low temperatures required for film processing. Herein we report on the isolation and characterization of the bimetallic Co-Mo alkoxide [Co3 Mo4 O10 (OCH3 )10 (dmf)4 ] (Co3 Mo4 ; dmf=N,N-dimethylformamide), which was prepared by the anion metathesis reaction of the corresponding metal chlorides. The Co-Mo alkoxide was explored as a well-defined precursor of cobalt oxide catalysts for the oxygen evolution reaction (OER) in alkaline electrolyte MOH. The catalysts demonstrated excellent activity in the OER, manifested in low onset potentials and Tafel slopes and superb stability under the operating conditions both in alkaline and nearly neutral media. It was observed that the nature of the metal cation of the alkaline electrolyte MOH (M+ =Li+ , Na+ , K+ , Cs+ ) greatly affected the catalytic performance of the material. We propose that the positive effect of larger metal cations on the film activity in the OER could be explained by the higher hydration enthalpies of larger ions and enhanced mass transport within a larger interlayer space between the [CoO2 ]δ-∞ sheets of the in situ formed binary oxides. It may be deduced that this trend is universal and may be extended to other types of metal oxides forming layered structures during the OER.
Collapse
Affiliation(s)
- Denis A Kuznetsov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432, Russian Federation.,Current address: Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092, Zürich, Switzerland
| | - Dmitry V Konev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432, Russian Federation.,D. I. Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russian Federation
| | - Sergey A Sokolov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991, Moscow, Russian Federation.,Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Ivan V Fedyanin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| |
Collapse
|