1
|
Huang D, Zhang L, Sun S, Li P, Fu Y, Tian R, Lu C. Three‐Dimensional Fluorescent Imaging to Monitor the Dynamic Distribution of Organic Additives in Polymers. ChemistrySelect 2023. [DOI: 10.1002/slct.202202109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Dandan Huang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Shihao Sun
- Zhengzhou Tobacco Research Institute of CNTC Zhengzhou 450001 China
| | - Peng Li
- Zhengzhou Tobacco Research Institute of CNTC Zhengzhou 450001 China
| | - Yingjie Fu
- Zhengzhou Tobacco Research Institute of CNTC Zhengzhou 450001 China
| | - Rui Tian
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
- Green Catalysis Center College of Chemistry Zhengzhou 450001 P. R. China
| |
Collapse
|
2
|
You H, Kang H, Kim D, Park JS, Lee JW, Lee S, Kim FS, Kim BJ. Cyano-Functionalized Quinoxaline-Based Polymer Acceptors for All-Polymer Solar Cells and Organic Transistors. CHEMSUSCHEM 2021; 14:3520-3527. [PMID: 33655716 DOI: 10.1002/cssc.202100080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Quinoxaline (Qx) derivatives are promising building units for efficient photovoltaic polymers owing to their strong light absorption and high charge-transport abilities, but they have been used exclusively in the construction of polymer donors. Herein, for the first time, Qx-based polymer acceptors (PA s) were developed by introducing electron-withdrawing cyano (CN) groups into the Qx moiety (QxCN). A series of QxCN-based PA s, P(QxCN-T2), P(QxCN-TVT), and P(QxCN-T3), were synthesized by copolymerizing the QxCN unit with bithiophene, (E)-1,2-di(thiophene-2-yl)ethene, and terthiophene, respectively. All of the PA s exhibited unipolar n-type characteristics with organic field-effect transistor (OFET) mobilities of around 10-2 cm2 V-1 s-1 . In space-charge-limited current devices, P(QxCN-T2) and P(QxCN-TVT) exhibited electron mobilities greater than 1.0×10-4 cm2 V-1 s-1 , due to the well-ordered structure with tight π-π stacking. When the PA s were applied in all-polymer solar cells (all-PSCs), the highest performance of 5.32 % was achieved in the P(QxCN-T2)-based device. These results demonstrate the significant potential of Qx-based PA s for high-performance all-PSCs and OFETs.
Collapse
Affiliation(s)
- Hoseon You
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyunbum Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Donguk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jin Su Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Felix Sunjoo Kim
- School of Chemical Engineering and Materials Science, Chung-Ang University (CAU), Seoul, 06974, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
3
|
Fan Q, Fu H, Wu Q, Wu Z, Lin F, Zhu Z, Min J, Woo HY, Jen AK. Multi‐Selenophene‐Containing Narrow Bandgap Polymer Acceptors for All‐Polymer Solar Cells with over 15 % Efficiency and High Reproducibility. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qunping Fan
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Huiting Fu
- Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Qiang Wu
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Ziang Wu
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Francis Lin
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Zonglong Zhu
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Jie Min
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Han Young Woo
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Alex K.‐Y. Jen
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Department of Materials Science and Engineering University of Washington Box352120 Seattle WA USA
| |
Collapse
|
4
|
Fan Q, Fu H, Wu Q, Wu Z, Lin F, Zhu Z, Min J, Woo HY, Jen AKY. Multi-Selenophene-Containing Narrow Bandgap Polymer Acceptors for All-Polymer Solar Cells with over 15 % Efficiency and High Reproducibility. Angew Chem Int Ed Engl 2021; 60:15935-15943. [PMID: 33939259 DOI: 10.1002/anie.202101577] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/23/2021] [Indexed: 11/08/2022]
Abstract
All-polymer solar cells (all-PSCs) progressed tremendously due to recent advances in polymerized small molecule acceptors (PSMAs), and their power conversion efficiencies (PCEs) have exceeded 15 %. However, the practical applications of all-PSCs are still restricted by a lack of PSMAs with a broad absorption, high electron mobility, low energy loss, and good batch-to-batch reproducibility. A multi-selenophene-containing PSMA, PFY-3Se, was developed based on a selenophene-fused SMA framework and a selenophene π-spacer. Compared to its thiophene analogue PFY-0Se, PFY-3Se shows a ≈30 nm red-shifted absorption, increased electron mobility, and improved intermolecular interaction. In all-PSCs, PFY-3Se achieved an impressive PCE of 15.1 % with both high short-circuit current density of 23.6 mA cm-2 and high fill factor of 0.737, and a low energy loss, which are among the best values in all-PSCs reported to date and much better than PFY-0Se (PCE=13.0 %). Notably, PFY-3Se maintains similarly good batch-to-batch properties for realizing reproducible device performance, which is the first reported and also very rare for the PSMAs. Moreover, the PFY-3Se-based all-PSCs show low dependence of PCE on device area (0.045-1.0 cm2 ) and active layer thickness (110-250 nm), indicating the great potential toward practical applications.
Collapse
Affiliation(s)
- Qunping Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong, Hong Kong
| | - Huiting Fu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, Hong Kong
| | - Qiang Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Ziang Wu
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Francis Lin
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong, Hong Kong
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong, Hong Kong
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong, Hong Kong.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, Hong Kong.,Department of Materials Science and Engineering, University of Washington, Box352120, Seattle, WA, USA
| |
Collapse
|
5
|
Yu H, Pan M, Sun R, Agunawela I, Zhang J, Li Y, Qi Z, Han H, Zou X, Zhou W, Chen S, Lai JYL, Luo S, Luo Z, Zhao D, Lu X, Ade H, Huang F, Min J, Yan H. Regio‐Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for All‐Polymer Solar Cells with 15.2 % Efficiency. Angew Chem Int Ed Engl 2021; 60:10137-10146. [DOI: 10.1002/anie.202016284] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Han Yu
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
- Hong Kong University of Science and Technology–Shenzhen Research Institute No. 9, Yuexing 1st RD, Hi-tech Park, Nanshan Shenzhen 518057 China
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Mingao Pan
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Rui Sun
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Indunil Agunawela
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL) North Carolina State University Raleigh NC 27695 USA
| | - Jianquan Zhang
- Hong Kong University of Science and Technology–Shenzhen Research Institute No. 9, Yuexing 1st RD, Hi-tech Park, Nanshan Shenzhen 518057 China
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Yuhao Li
- Department of Physics Chinese University of Hong Kong New Territories Hong Kong 999077 China
| | - Zhenyu Qi
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Han Han
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Xinhui Zou
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Wentao Zhou
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Shangshang Chen
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Joshua Yuk Lin Lai
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Siwei Luo
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Zhenghui Luo
- Hong Kong University of Science and Technology–Shenzhen Research Institute No. 9, Yuexing 1st RD, Hi-tech Park, Nanshan Shenzhen 518057 China
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Xinhui Lu
- Department of Physics Chinese University of Hong Kong New Territories Hong Kong 999077 China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL) North Carolina State University Raleigh NC 27695 USA
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Jie Min
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
- Key Laboratory of Materials Processing and Mold Zhengzhou University Ministry of Education 450002 Zhengzhou China
| | - He Yan
- Hong Kong University of Science and Technology–Shenzhen Research Institute No. 9, Yuexing 1st RD, Hi-tech Park, Nanshan Shenzhen 518057 China
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| |
Collapse
|
6
|
Yu H, Pan M, Sun R, Agunawela I, Zhang J, Li Y, Qi Z, Han H, Zou X, Zhou W, Chen S, Lai JYL, Luo S, Luo Z, Zhao D, Lu X, Ade H, Huang F, Min J, Yan H. Regio‐Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for All‐Polymer Solar Cells with 15.2 % Efficiency. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Han Yu
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
- Hong Kong University of Science and Technology–Shenzhen Research Institute No. 9, Yuexing 1st RD, Hi-tech Park, Nanshan Shenzhen 518057 China
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Mingao Pan
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Rui Sun
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Indunil Agunawela
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL) North Carolina State University Raleigh NC 27695 USA
| | - Jianquan Zhang
- Hong Kong University of Science and Technology–Shenzhen Research Institute No. 9, Yuexing 1st RD, Hi-tech Park, Nanshan Shenzhen 518057 China
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Yuhao Li
- Department of Physics Chinese University of Hong Kong New Territories Hong Kong 999077 China
| | - Zhenyu Qi
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Han Han
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Xinhui Zou
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Wentao Zhou
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Shangshang Chen
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Joshua Yuk Lin Lai
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Siwei Luo
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Zhenghui Luo
- Hong Kong University of Science and Technology–Shenzhen Research Institute No. 9, Yuexing 1st RD, Hi-tech Park, Nanshan Shenzhen 518057 China
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences Centre for Soft Matter Science and Engineering Key Lab of Polymer Chemistry & Physics of the Ministry of Education College of Chemistry Peking University Beijing 100871 China
| | - Xinhui Lu
- Department of Physics Chinese University of Hong Kong New Territories Hong Kong 999077 China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL) North Carolina State University Raleigh NC 27695 USA
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Jie Min
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
- Key Laboratory of Materials Processing and Mold Zhengzhou University Ministry of Education 450002 Zhengzhou China
| | - He Yan
- Hong Kong University of Science and Technology–Shenzhen Research Institute No. 9, Yuexing 1st RD, Hi-tech Park, Nanshan Shenzhen 518057 China
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| |
Collapse
|