1
|
Vogel J, Chen Y, Fadler RE, Flood AH, von Delius M. Steric Control over the Threading of Pyrophosphonates with One or Two Cyanostar Macrocycles during Pseudorotaxane Formation. Chemistry 2023; 29:e202300899. [PMID: 37156722 PMCID: PMC10655069 DOI: 10.1002/chem.202300899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
The supramolecular recognition of anions is increasingly harnessed to achieve the self-assembly of supramolecular architectures, ranging from cages and polymers to (pseudo)rotaxanes. The cyanostar (CS) macrocycle has previously been shown to form 2 : 1 complexes with organophosphate anions that can be turned into [3]rotaxanes by stoppering. Here we achieved steric control over the assembly of pseudorotaxanes comprising the cyanostar macrocycle and a thread that is based, for the first time, on organo-pyrophosphonates. Subtle differences in steric bulk on the threads allowed formation of either [3]pseudorotaxanes or [2]pseudorotaxanes. We demonstrate that the threading kinetics are governed by the steric demand of the organo-pyrophosphonates and in one case, slows down to the timescale of minutes. Calculations show that the dianions are sterically offset inside the macrocycles. Our findings broaden the scope of cyanostar-anion assemblies and may have relevance for the design of molecular machines whose directionality is a result of relatively slow slipping.
Collapse
Affiliation(s)
- Julian Vogel
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yusheng Chen
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Rachel E Fadler
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Amar H Flood
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
2
|
Song G, Kim KM, Lee S, Jeong KS. Subtle Modification of Imine-linked Helical Receptors to Significantly Alter their Binding Affinities and Selectivities for Chiral Guests. Chem Asian J 2021; 16:2958-2966. [PMID: 34378325 DOI: 10.1002/asia.202100768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Indexed: 11/07/2022]
Abstract
Aromatic helical receptors P-1 and P-2 were slightly modified by aerobic oxidation to afford new receptors P-7 and P-8 with right-handed helical cavities. This subtle modification induced significant changes in the binding properties for chiral guests. Specifically, P-1 was reported to bind d-tartaric acid (Ka =35500 M-1 ), used as a template, much strongly than l-tartaric acid (326 M-1 ). In contrast, its modified receptor P-7 exhibited significantly reduced affinities for d-tartaric acid (3600 M-1 ) and l-tartaric acid (125 M-1 ). More dramatic changes in the affinities and selectivities were observed for P-2 and P-8 upon binding of polyol guests. P-2 was determined to selectively bind d-sorbitol (52000 M-1 ) over analogous guests, but P-8 showed no binding selectivity: d-sorbitol (1890 M-1 ), l-sorbitol (3330 M-1 ), d-arabitol (959 M-1 ), l-arabitol (4970 M-1 ) and xylitol (4960 M-1 ) in 5% (v/v) DMSO/CH2 Cl2 at 25±1 °C. These results clearly demonstrate that even subtle post-modifications of synthetic receptors may significantly alter their binding affinities and selectivities, in particular for guests of long and flexible chains.
Collapse
Affiliation(s)
- Geunmoo Song
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyung Mog Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seungwon Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
3
|
Jiao J, Dong J, Li Y, Cui Y. Fine‐Tuning of Chiral Microenvironments within Triple‐Stranded Helicates for Enhanced Enantioselectivity. Angew Chem Int Ed Engl 2021; 60:16568-16575. [DOI: 10.1002/anie.202104111] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/01/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Jingjing Jiao
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| | - Jinqiao Dong
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yingguo Li
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
4
|
Jiao J, Dong J, Li Y, Cui Y. Fine‐Tuning of Chiral Microenvironments within Triple‐Stranded Helicates for Enhanced Enantioselectivity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jingjing Jiao
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| | - Jinqiao Dong
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yingguo Li
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
5
|
Su M, Yan X, Guo X, Li Q, Zhang Y, Li C. Two Orthogonal Halogen-Bonding Interactions Directed 2D Crystalline Supramolecular J-Dimer Lamellae. Chemistry 2020; 26:4505-4509. [PMID: 32077546 DOI: 10.1002/chem.202000462] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Indexed: 12/16/2022]
Abstract
Dye assemblies exhibit fascinating properties and performances, both of which depend critically on the mutual packing arrangement of dyes and on the supramolecular architecture. Herein, we engineered, for the first time, an intriguing chlorosome-mimetic 2D crystalline J-dimer lamellar structure based on halogenated dyes in aqueous media by employing two distinct orthogonal halogen-bonding (XB) interactions. As the only building motif, antiparallel J-dimer was formed and stabilized by single π-stacking and dual halogen⋅⋅⋅π interactions. With two substituted halogen atoms acting as XB donors and the other two acting as acceptors, the constituent J-dimer units were linked by quadruple highly-directional halogen⋅⋅⋅halogen interactions in a staggered manner, resulting in unique 2D lamellar dye assemblies. This work champions and advances halogen-bonding as a remarkably potent tool for engineering dye aggregates with a controlled molecular packing arrangement and supramolecular architecture.
Collapse
Affiliation(s)
- Meihui Su
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaosa Yan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Xia Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Quanwen Li
- School of Materials Science and Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Yushi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Changhua Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
6
|
Vanderkooy A, Gupta AK, Földes T, Lindblad S, Orthaber A, Pápai I, Erdélyi M. Halogen Bonding Helicates Encompassing Iodonium Cations. Angew Chem Int Ed Engl 2019; 58:9012-9016. [PMID: 31074942 PMCID: PMC6773207 DOI: 10.1002/anie.201904817] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/06/2019] [Indexed: 12/16/2022]
Abstract
The first halonium-ion-based helices were designed and synthesized using oligo-aryl/pyridylene-ethynylene backbones that fold around reactive iodonium ions. Halogen bonding interactions stabilize the iodonium ions within the helices. Remarkably, the distance between two iodonium ions within a helix is shorter than the sum of their van der Waals radii. The helical conformations were characterized by X-ray crystallography in the solid state, by NMR spectroscopy in solution and corroborated by DFT calculations. The helical complexes possess potential synthetic utility, as demonstrated by their ability to induce iodocyclization of 4-penten-1-ol.
Collapse
Affiliation(s)
- Alan Vanderkooy
- Department of Chemistry-BMC, Uppsala Universitet, Husargatan 3, 752 37, Uppsala, Sweden
| | - Arvind Kumar Gupta
- Department of Chemistry-Ångström Laboratory, Uppsala Universitet, Lägerhyddsvägen 1, 751 20, Uppsala, Sweden
| | - Tamás Földes
- Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Present address: Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Sofia Lindblad
- Department of Chemistry-BMC, Uppsala Universitet, Husargatan 3, 752 37, Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry-Ångström Laboratory, Uppsala Universitet, Lägerhyddsvägen 1, 751 20, Uppsala, Sweden
| | - Imre Pápai
- Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Máté Erdélyi
- Department of Chemistry-BMC, Uppsala Universitet, Husargatan 3, 752 37, Uppsala, Sweden
| |
Collapse
|
7
|
Vanderkooy A, Gupta AK, Földes T, Lindblad S, Orthaber A, Pápai I, Erdélyi M. Halogen Bonding Helicates Encompassing Iodonium Cations. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904817] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alan Vanderkooy
- Department of Chemistry—BMCUppsala Universitet Husargatan 3 752 37 Uppsala Sweden
| | - Arvind Kumar Gupta
- Department of Chemistry—Ångström LaboratoryUppsala Universitet Lägerhyddsvägen 1 751 20 Uppsala Sweden
| | - Tamás Földes
- Institute of Organic ChemistryResearch Center for Natural SciencesHungarian Academy of Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
- Present address: Department of ChemistryKing's College London London SE1 1DB UK
| | - Sofia Lindblad
- Department of Chemistry—BMCUppsala Universitet Husargatan 3 752 37 Uppsala Sweden
| | - Andreas Orthaber
- Department of Chemistry—Ångström LaboratoryUppsala Universitet Lägerhyddsvägen 1 751 20 Uppsala Sweden
| | - Imre Pápai
- Institute of Organic ChemistryResearch Center for Natural SciencesHungarian Academy of Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Máté Erdélyi
- Department of Chemistry—BMCUppsala Universitet Husargatan 3 752 37 Uppsala Sweden
| |
Collapse
|