1
|
Gong W, Ma J, Chen G, Dai Y, Long R, Zhao H, Xiong Y. Unlocking the catalytic potential of heterogeneous nonprecious metals for selective hydrogenation reactions. Chem Soc Rev 2024. [PMID: 39659267 DOI: 10.1039/d4cs01005a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Selective hydrogenation has been employed extensively to produce value-added chemicals and fuels, greatly alleviating the problems of fossil resources and green synthesis. However, the design and synthesis of highly efficient catalysts, especially those that are inexpensive and abundant in the earth's crust, is still required for basic research and subsequent industrial applications. In recent years, many studies have revealed that the rational design and synthesis of heterogeneous catalysts can efficaciously improve the catalytic performance of hydrogenation reactions. However, the relationship between nonprecious metal catalysts and hydrogenation performance from the perspective of different catalytic systems still remains to be understood. In this review, we provide a comprehensive and systematic overview of the recent advances in the synthesis of nonprecious metal catalysts for heterogeneous selective hydrogenation reactions including thermocatalytic hydrogenation/transfer hydrogenation, photocatalytic hydrogenation and electrocatalytic reduction. In addition, we also aim to provide a clear picture of the recent design strategies and proposals for the nonprecious metal catalysed hydrogenation reactions. Finally, we discuss the current challenges and future research opportunities for the precise design and synthesis of nonprecious metal catalysts for selective hydrogenation reactions.
Collapse
Affiliation(s)
- Wanbing Gong
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Jun Ma
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Guangyu Chen
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Yitao Dai
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Ran Long
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Huijun Zhao
- School of Environment & Science, Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, Queensland 4222, Australia.
| | - Yujie Xiong
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Anhui Engineering Research Center of Carbon Neutrality, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| |
Collapse
|
2
|
Manna S, Kong WJ, Bäckvall JE. Iron(II)-Catalyzed Aerobic Biomimetic Oxidation of N-Heterocycles. Chemistry 2021; 27:13725-13729. [PMID: 34324754 PMCID: PMC8518507 DOI: 10.1002/chem.202102483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/29/2022]
Abstract
Herein, an iron(II)-catalyzed biomimetic oxidation of N-heterocycles under aerobic conditions is described. The dehydrogenation process, involving several electron-transfer steps, is inspired by oxidations occurring in the respiratory chain. An environmentally friendly and inexpensive iron catalyst together with a hydroquinone/cobalt Schiff base hybrid catalyst as electron-transfer mediator were used for the substrate-selective dehydrogenation reaction of various N-heterocycles. The method shows a broad substrate scope and delivers important heterocycles in good-to-excellent yields.
Collapse
Affiliation(s)
- Srimanta Manna
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Wei-Jun Kong
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Jan-E Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
- Department of Natural Sciences, Mid Sweden University, 85170, Sundsvall, Sweden
| |
Collapse
|
3
|
Guðmundsson A, Manna S, Bäckvall J. Iron(II)‐Catalyzed Aerobic Biomimetic Oxidation of Amines using a Hybrid Hydroquinone/Cobalt Catalyst as Electron Transfer Mediator. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Arnar Guðmundsson
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Srimanta Manna
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Jan‐E. Bäckvall
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
- Department of Natural Sciences Mid Sweden University 85170 Sundsvall Sweden
| |
Collapse
|
4
|
Guðmundsson A, Manna S, Bäckvall J. Iron(II)-Catalyzed Aerobic Biomimetic Oxidation of Amines using a Hybrid Hydroquinone/Cobalt Catalyst as Electron Transfer Mediator. Angew Chem Int Ed Engl 2021; 60:11819-11823. [PMID: 33725364 PMCID: PMC8252094 DOI: 10.1002/anie.202102681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 11/30/2022]
Abstract
Herein we report the first FeII -catalyzed aerobic biomimetic oxidation of amines. This oxidation reaction involves several electron transfer steps and is inspired by biological oxidation in the respiratory chain. The electron transfer from the amine to molecular oxygen is aided by two coupled catalytic redox systems, which lower the energy barrier and improve the selectivity of the oxidation reaction. An iron hydrogen transfer complex was utilized as the substrate-selective dehydrogenation catalyst along with a bifunctional hydroquinone/cobalt Schiff base complex as a hybrid electron transfer mediator. Various primary and secondary amines were oxidized in air to their corresponding aldimines or ketimines in good to excellent yield.
Collapse
Affiliation(s)
- Arnar Guðmundsson
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Srimanta Manna
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
- Department of Natural SciencesMid Sweden University85170SundsvallSweden
| |
Collapse
|
5
|
Guðmundsson A, Schlipköter KE, Bäckvall J. Iron(II)-Catalyzed Biomimetic Aerobic Oxidation of Alcohols. Angew Chem Int Ed Engl 2020; 59:5403-5406. [PMID: 31999013 PMCID: PMC7154773 DOI: 10.1002/anie.202000054] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 12/16/2022]
Abstract
We report the first FeII -catalyzed biomimetic aerobic oxidation of alcohols. The principle of this oxidation, which involves several electron-transfer steps, is reminiscent of biological oxidation in the respiratory chain. The electron transfer from the alcohol to molecular oxygen occurs with the aid of three coupled catalytic redox systems, leading to a low-energy pathway. An iron transfer-hydrogenation complex was utilized as a substrate-selective dehydrogenation catalyst, along with an electron-rich quinone and an oxygen-activating Co(salen)-type complex as electron-transfer mediators. Various primary and secondary alcohols were oxidized in air to the corresponding aldehydes or ketones with this method in good to excellent yields.
Collapse
Affiliation(s)
- Arnar Guðmundsson
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Kim Elisabeth Schlipköter
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
- Current address: Institute of Technical BiocatalysisHamburg University of Technology TUHH21071HamburgGermany
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| |
Collapse
|
6
|
Guðmundsson A, Schlipköter KE, Bäckvall J. Iron(II)‐Catalyzed Biomimetic Aerobic Oxidation of Alcohols. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arnar Guðmundsson
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Kim Elisabeth Schlipköter
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 10691 Stockholm Sweden
- Current address: Institute of Technical BiocatalysisHamburg University of Technology TUHH 21071 Hamburg Germany
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| |
Collapse
|
7
|
Stadler BM, Hinze S, Tin S, de Vries JG. Hydrogenation of Polyesters to Polyether Polyols. CHEMSUSCHEM 2019; 12:4082-4087. [PMID: 31332956 PMCID: PMC6771520 DOI: 10.1002/cssc.201901210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/22/2019] [Indexed: 05/21/2023]
Abstract
The amount of plastic waste is continuously increasing. Besides conventional recycling, one solution to deal with this problem could be to use this waste as a resource for novel materials. In this study, polyesters are hydrogenated to give polyether polyols by using in situ-generated Ru-Triphos catalysts in combination with Lewis acids. The choice of Lewis acid and its concentration relative to the ruthenium catalyst are found to determine the selectivity of the reaction. Monitoring of the molecular weight during the reaction confirms a sequential mechanism in which the diols that are formed by hydrogenation are etherified to the polyethers. To probe the applicability of this tandem hydrogenation etherification approach, a range of polyester substrates is investigated. The oligoether products that form in these reactions have the chain lengths that are appropriate for application in the adhesives and coatings industries. This strategy makes polyether polyols accessible that are otherwise difficult to obtain from conventional fossil-based feedstocks.
Collapse
Affiliation(s)
- Bernhard M. Stadler
- Leibniz Institut für Katalyse e. V. an derUniversität RostockAlbert-Einstein-Strasse 29a18055RostockGermany
| | - Sandra Hinze
- Leibniz Institut für Katalyse e. V. an derUniversität RostockAlbert-Einstein-Strasse 29a18055RostockGermany
| | - Sergey Tin
- Leibniz Institut für Katalyse e. V. an derUniversität RostockAlbert-Einstein-Strasse 29a18055RostockGermany
| | - Johannes G. de Vries
- Leibniz Institut für Katalyse e. V. an derUniversität RostockAlbert-Einstein-Strasse 29a18055RostockGermany
| |
Collapse
|