1
|
Chawla N, Gupta L, Kumar S. Bioremediation technologies for remediation of dyes from wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1229. [PMID: 39570539 DOI: 10.1007/s10661-024-13410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The colored dyes are extensively applied in diverse industrial setups such as textiles, paper, leather, and cosmetics. The unutilized dyes are released in the waste and pose a serious menace to the environment, ecological balance, and human health. Because of their chemical nature, they are extremely resistant to common methods of treatment and often persist in the aquatic environment. A sustainable and eco-friendly approach for treating dye-contaminated wastewater is "bioremediation." This manuscript aims to discuss the exclusive role of diversified microorganisms and plants, immobilized microbial cells/enzymes, microbial consortia, nanomaterials, and combination approaches in the bioremediation of dyes. It also provides a comprehensive understanding of different bio-remedial technologies used to remove dyes from wastewater. In addition, the underlying mechanisms affecting the efficacy of bio-remedial technologies, the latest breakthroughs, challenges, and potential solutions in scaling up, and prospects in this area are also explored. We also detail the noteworthiness of genetic engineering in different bioremediation technologies to solve the issues associated with dye contamination in wastewater and its removal from the environment.
Collapse
Affiliation(s)
- Niti Chawla
- Department of Biotechnology, Chaudhary Bansi Lal University, Prem Nagar, Bhiwani, 127031, Haryana, India
| | - Lalita Gupta
- Department of Zoology, Chaudhary Bansi Lal University, Prem Nagar, Bhiwani, 127031, Haryana, India
| | - Sanjeev Kumar
- Department of Biotechnology, Chaudhary Bansi Lal University, Prem Nagar, Bhiwani, 127031, Haryana, India.
| |
Collapse
|
2
|
Suhag S, Jain U, Chauhan N, Hooda V. Cellulase immobilization on nano-chitosan/chromium metal-organic framework hybrid matrix for efficient conversion of lignocellulosic biomass to glucose. Prep Biochem Biotechnol 2024:1-21. [PMID: 39540323 DOI: 10.1080/10826068.2024.2425970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In the current work, cellulase from Aspergillus niger was successfully immobilized on a novel epoxy-affixed chromium metal-organic framework/chitosan (Cr@-MIL-101/CS) support via covalent method using glutaraldehyde as a crosslinker. The bare and cellulase-bound support was characterized by using various microscopic and spectroscopic techniques. Immobilized cellulase exhibited a high immobilization yield of 0.7 ± 0.01 mg/cm2, retaining 87.5 ± 0.04% of its specific activity and displaying enhanced catalytic performance. The immobilized enzyme was maximally active at pH 5.0, temperature 65 °C and 0.9 × 10-2 mg/ml saturating substrate concentration and the half-lives of free and immobilized cellulases were approximately 9 and 19 days, respectively. The decrease in activation energy, enthalpy change, and Gibbs free energy change, coupled with an increase in entropy change upon immobilization, indicated that the enzyme's efficiency, stability, and spontaneity in catalyzing the reaction were enhanced by immobilization. Additionally, the immobilized cellulase efficiently converted rice husk cellulose to glucose, with a quantification limit of 0.05%, linear measurement ranging from 0.1 to 0.9%, and 8.5% conversion efficiency. The present method exhibited a strong correlation (R2 = 0.998) with the DNS method, validating its reliability. Notably, the epoxy/Cr@-MIL-101/CS-bound cellulase demonstrated impressive thermal and pH stabilities, retaining 50% of its activity at 75 °C and over 96% at pH levels of 4.5 and 5.0 after 12 h. Furthermore, it showed excellent reusability, preserving 80% of its activity after 15 cycles and maintaining 50% of its activity even after 20 days of storage. These results suggest that epoxy/Cr@-MIL-101/CS/cellulase composites could be very effective for large-scale cellulose hydrolysis applications.
Collapse
Affiliation(s)
- Shashi Suhag
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Utkarsh Jain
- School of Health Sciences & Technology (SoHST), UPES, Dehradun, India
| | - Nidhi Chauhan
- School of Health Sciences & Technology (SoHST), UPES, Dehradun, India
| | - Vinita Hooda
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
3
|
Aghaee M, Salehipour M, Rezaei S, Mogharabi-Manzari M. Bioremediation of organic pollutants by laccase-metal-organic framework composites: A review of current knowledge and future perspective. BIORESOURCE TECHNOLOGY 2024; 406:131072. [PMID: 38971387 DOI: 10.1016/j.biortech.2024.131072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Immobilized laccases are widely used as green biocatalysts for bioremediation of phenolic pollutants and wastewater treatment. Metal-organic frameworks (MOFs) show potential application for immobilization of laccase. Their unique adsorption properties provide a synergic effect of adsorption and biodegradation. This review focuses on bioremediation of wastewater pollutants using laccase-MOF composites, and summarizes the current knowledge and future perspective of their biodegradation and the enhancement strategies of enzyme immobilization. Mechanistic strategies of preparation of laccase-MOF composites were mainly investigated via physical adsorption, chemical binding, and de novo/co-precipitation approaches. The influence of architecture of MOFs on the efficiency of immobilization and bioremediation were discussed. Moreover, as sustainable technology, the integration of laccases and MOFs into wastewater treatment processes represents a promising approach to address the challenges posed by industrial pollution. The MOF-laccase composites can be promising and reliable alternative to conventional techniques for the treatment of wastewaters containing pharmaceuticals, dyes, and phenolic compounds. The detailed exploration of various immobilization techniques and the influence of MOF architecture on performance provides valuable insights for optimizing these composites, paving the way for future advancements in environmental biotechnology. The findings of this research have the potential to influence industrial wastewater treatment and promoting cleaner treatment processes and contributing to sustainability efforts.
Collapse
Affiliation(s)
- Mehdi Aghaee
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, P.O. Box 48175-861 Sari 4847193698, Iran
| | - Masoud Salehipour
- Department of Biology, Faculty of Biological Sciences, Parand Branch of Islamic Azad University, P.O. Box 37613-96361, Parand, Tehran, Iran
| | - Shahla Rezaei
- Department of Biology, Faculty of Biological Sciences, Parand Branch of Islamic Azad University, P.O. Box 37613-96361, Parand, Tehran, Iran
| | - Mehdi Mogharabi-Manzari
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, P.O. Box 48175-861 Sari 4847193698, Iran; Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
4
|
Jash O, Srivastava A, Balasubramanian S. HP35 Protein in the Mesopore of MIL-101(Cr) MOF: A Model to Study Cotranslocational Unfolding. ACS OMEGA 2024; 9:31185-31194. [PMID: 39035967 PMCID: PMC11256354 DOI: 10.1021/acsomega.4c05452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
The immobilization of enzymes in metal-organic framework (MOF) cages is important in biotechnology. In this context, the mechanism of translocation of proteins through the cavities of the MOF and the roles played by confinement and MOF chemistry in giving rise to stable protein intermediates that are otherwise transiently populated in the physiological environment are important questions to be addressed. These unexplored aspects are examined with villin headpiece (HP35) as a model protein confined within a mesopore of MIL-101(Cr) using molecular dynamics simulations. At equilibrium, the protein is located farther from the center of the cavity and closer to the MOF surface. Molecular interactions with the MOF partially unfold helix-1 at its N-terminus. Umbrella sampling simulations inform the range of conformations that HP35 undertakes during translocation from one cavity to another and associated changes in free energy. Relative to its equilibrium state within the cavity, the free energy barrier for the unfolded protein at the cage window is estimated to be 16 kcal/mol. This study of MOF-based protein conformation can also be a general approach to observing intermediates in folding-unfolding pathways.
Collapse
Affiliation(s)
- Oishika Jash
- Chemistry
and Physics of Materials Unit, Jawaharlal
Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Anand Srivastava
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India
| | - Sundaram Balasubramanian
- Chemistry
and Physics of Materials Unit, Jawaharlal
Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| |
Collapse
|
5
|
Wang H, Kou X, Gao R, Huang S, Chen G, Ouyang G. Enzyme-Immobilized Porous Crystals for Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11869-11886. [PMID: 38940189 DOI: 10.1021/acs.est.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Developing efficient technologies to eliminate or degrade contaminants is paramount for environmental protection. Biocatalytic decontamination offers distinct advantages in terms of selectivity and efficiency; however, it still remains challenging when applied in complex environmental matrices. The main challenge originates from the instability and difficult-to-separate attributes of fragile enzymes, which also results in issues of compromised activity, poor reusability, low cost-effectiveness, etc. One viable solution to harness biocatalysis in complex environments is known as enzyme immobilization, where a flexible enzyme is tightly fixed in a solid carrier. In the case where a reticular crystal is utilized as the support, it is feasible to engineer next-generation biohybrid catalysts functional in complicated environmental media. This can be interpreted by three aspects: (1) the highly crystalline skeleton can shield the immobilized enzyme against external stressors. (2) The porous network ensures the high accessibility of the interior enzyme for catalytic decontamination. And (3) the adjustable and unambiguous structure of the reticular framework favors in-depth understanding of the interfacial interaction between the framework and enzyme, which can in turn guide us in designing highly active biocomposites. This Review aims to introduce this emerging biocatalysis technology for environmental decontamination involving pollutant degradation and greenhouse gas (carbon dioxide) conversion, with emphasis on the enzyme immobilization protocols and diverse catalysis principles including single enzyme catalysis, catalysis involving enzyme cascades, and photoenzyme-coupled catalysis. Additionally, the remaining challenges and forward-looking directions in this field are discussed. We believe that this Review may offer a useful biocatalytic technology to contribute to environmental decontamination in a green and sustainable manner and will inspire more researchers at the intersection of the environment science, biochemistry, and materials science communities to co-solve environmental problems.
Collapse
Affiliation(s)
- Hao Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Rui Gao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Siming Huang
- Guangzhou Municipal and Guangzhou Province Key Laboratory of Molecular Target & Clinical Phamacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Phamaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
6
|
Fernando D, Mathesh M, Cai J, Yang W. In Situ Immobilization of Multi-Enzymes for Enhanced Substrate Channeling of Enzyme Cascade Reactions: A Nanoarchitectonics Approach by Directed Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37229646 DOI: 10.1021/acs.langmuir.3c00879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Rationally tailoring a controlled spatial organization of enzymes in a nanoarchitecture for multi-enzyme cascade reactions can enhance the catalytic efficiency via substrate channeling. However, attaining substrate channeling is a grand challenge, requiring sophisticated techniques. Herein, we report facile polymer-directed metal-organic framework (MOF)-based nanoarchitechtonics for realizing a desirable enzyme architecture with significantly enhanced substrate channeling. The new method involves the use of poly(acrylamide-co-diallyldimethylammonium chloride) (PADD) as a modulator in a one-step process for simultaneous MOF synthesis and co-immobilization of enzymes (GOx and HRP). The resultant enzymes-PADD@MOFs constructs showed a closely packed nanoarchitecture with enhanced substrate channeling. A transient time close to 0 s was observed, owing to a short diffusion path for substrates in a 2D spindle-shaped structure and their direct transfer from one enzyme to another. This enzyme cascade reaction system showed a 3.5-fold increase in catalytic activity in comparison to free enzymes. The findings provide a new insight into using polymer-directed MOF-based enzyme nanoarchitectures to improve catalytic efficiency and selectivity.
Collapse
Affiliation(s)
- Dulini Fernando
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Motilal Mathesh
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Jackie Cai
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Wenrong Yang
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
7
|
Saddique Z, Imran M, Javaid A, Rizvi NB, Akhtar MN, Iqbal HMN, Bilal M. Enzyme-Linked Metal Organic Frameworks for Biocatalytic Degradation of Antibiotics. Catal Letters 2023. [DOI: 10.1007/s10562-022-04261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
AbstractMetal organic frameworks (MOFs) are multi-dimensional network of crystalline material held together by bonding of metal atoms and organic ligands. Owing to unique structural, chemical, and physical properties, MOFs has been used for enzyme immobilization to be employed in different catalytic process, including catalytic degradation of antibiotics. Immobilization process other than providing large surface provides enzyme with enhanced stability, catalytic activity, reusability, and selectivity. There are various approaches of enzyme immobilization over MOFs including physical adsorption, chemical bonding, diffusion and in situ encapsulation. In situ encapsulation is one the best approach that provides extra stability from unfolding and denaturation in harsh industrial conditions. Presence of antibiotic in environment is highly damaging for human in particular and ecosystem in general. Different methods such as ozonation, oxidation, chlorination and catalysis are available for degradation or removal of antibiotics from environment, however these are associated with several issues. Contrary to these, enzyme immobilized MOFs are novel system to be used in catalytic degradation of antibiotics. Enzyme@MOFs are more stable, reusable and more efficient owing to additional support of MOFs to natural enzymes in well-established process of photocatalysis for degradation of antibiotics aimed at environmental remediation. Prime focus of this review is to present catalytic degradation of antibiotics by enzyme@MOFs while outlining their synthetics approaches, characterization, and mechanism of degradation. Furthermore, this review highlights the significance of enzyme@MOFs system for antibiotics degradation in particular and environmental remediation in general. Current challenges and future perspective of research in this field are also outlined along with concluding comments.
Graphical Abstract
Collapse
|
8
|
Sicard C. In Situ Enzyme Immobilization by Covalent Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202213405. [PMID: 36330829 DOI: 10.1002/anie.202213405] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Indexed: 11/06/2022]
Abstract
Enzyme immobilization is a widely reported method to favor the applicability of enzymes by enhancing their stability and re-usability. Among the various existing solid supports and immobilization strategies, the in situ encapsulation of enzymes within crystalline porous matrices is a powerful tool to design biohybrids with a stable and protected catalytic activity. However, to date, only a few metal-organic frameworks (MOFs) and hydrogen-bonded organic frameworks (HOFs) have been reported. Excitingly, for the first time, Y. Chen and co-workers expanded the in situ bio-encapsulation to a new class of crystalline porous materials, namely covalent organic frameworks (COFs). The enzyme@COF materials not only exhibited high enzyme loading with minimal leaching, high catalytic activity and selectivity, chemical and long-term stability and recyclability but could also be scaled up to a few grams. Undoubtedly, this work opens new striking opportunities for enzymatic immobilization and will stimulate new research on COF-based matrices.
Collapse
Affiliation(s)
- Clémence Sicard
- Institut Lavoisier de Versailles, UMR CNRS 8180, UVSQ, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles cedex, France
| |
Collapse
|
9
|
Yang T, Liu X, Zeng Z, Wang X, Zhang P, Feng B, Tian K, Qing T. Efficient and recyclable degradation of organic dye pollutants by CeO 2@ZIF-8 nanozyme-based non-photocatalytic system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120643. [PMID: 36372366 DOI: 10.1016/j.envpol.2022.120643] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Advanced oxidation processes-based catalysis system as the most typical pollutant degradation technology always suffer from poor durability and photo-dependent. Inspired by the fact that some nanomaterials exhibit catalytic properties closer to natural enzymes, a high peroxidase-like activity and stability CeO2@ZIF-8 nanozyme was synthesized in this study for non-photodegradation of dyes pollution. Multiple characterization techniques were applied to prove the successful synthesis of the nanozyme. The influence of different parameters on the catalytic degradation of organic dye by nanozyme was investigated. This nanozyme achieved a maximum degradation efficiency of 99.81% for methyl orange and maintained its catalytic performance in repeated experiments. Possible degradation intermediates and pathways for methyl orange were then proposed. In addition, the CeO2@ZIF-8 loaded starch/agarose films were prepared for the portable and recyclable remediation of real dye wastewater, which maintained more than 80% degradation efficiency after 5 successive cycles. These results suggested that nanozyme based non-photocatalytic system is a potential catalyst for dye degradation and it opens a new avenue to develop high-performance and recyclable catalysts for pollutant remediation.
Collapse
Affiliation(s)
- Tianhui Yang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Xiaofeng Liu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, China
| | - Zihang Zeng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Xujun Wang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Ke Tian
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China.
| |
Collapse
|
10
|
Parsaei M, Akhbari K. Synthesis and Application of MOF-808 Decorated with Folic Acid-Conjugated Chitosan as a Strong Nanocarrier for the Targeted Drug Delivery of Quercetin. Inorg Chem 2022; 61:19354-19368. [DOI: 10.1021/acs.inorgchem.2c03138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mozhgan Parsaei
- School of Chemistry, College of Science, University of Tehran, Tehran14155-6455, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, Tehran14155-6455, Iran
| |
Collapse
|
11
|
Synthesis and Biomedical Applications of Highly Porous Metal-Organic Frameworks. Molecules 2022; 27:molecules27196585. [PMID: 36235122 PMCID: PMC9572148 DOI: 10.3390/molecules27196585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
In this review, aspects of the synthesis, framework topologies, and biomedical applications of highly porous metal-organic frameworks are discussed. The term "highly porous metal-organic frameworks" (HPMOFs) is used to denote MOFs with a surface area larger than 4000 m2 g-1. Such compounds are suitable for the encapsulation of a variety of large guest molecules, ranging from organic dyes to drugs and proteins, and hence they can address major contemporary challenges in the environmental and biomedical field. Numerous synthetic approaches towards HPMOFs have been developed and discussed herein. Attempts are made to categorise the most successful synthetic strategies; however, these are often not independent from each other, and a combination of different parameters is required to be thoroughly considered for the synthesis of stable HPMOFs. The majority of the HPMOFs in this review are of special interest not only because of their high porosity and fascinating structures, but also due to their capability to encapsulate and deliver drugs, proteins, enzymes, genes, or cells; hence, they are excellent candidates in biomedical applications that involve drug delivery, enzyme immobilisation, gene targeting, etc. The encapsulation strategies are described, and the MOFs are categorised according to the type of biomolecule they are able to encapsulate. The research field of HPMOFs has witnessed tremendous development recently. Their intriguing features and potential applications attract researchers' interest and promise an auspicious future for this class of highly porous materials.
Collapse
|
12
|
Li JJ, Yin L, Wang ZF, Jing YC, Jiang ZL, Ding Y, Wang HS. Enzyme-immobilized metal-organic frameworks: From preparation to application. Chem Asian J 2022; 17:e202200751. [PMID: 36029234 DOI: 10.1002/asia.202200751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/27/2022] [Indexed: 11/09/2022]
Abstract
As a class of widely used biocatalysts, enzymes possess advantages including high catalytic efficiency, strong specificity and mild reaction condition. However, most free enzymes have high requirements on the reaction environment and are easy to deactivate. Immobilization of enzymes on nanomaterial-based substrates is a good way to solve this problem. Metal-organic framework (MOFs), with ultra-high specific surface area and adjustable porosity, can provide a large space to carry enzymes. And the tightly surrounded protective layer of MOFs can stabilize the enzyme structure to a great extent. In addition, the unique porous network structure enables selective mass transfer of substrates and facilitates catalytic processes. Therefore, these enzyme-immobilized MOFs have been widely used in various research fields, such as molecule/biomolecule sensing and imaging, disease treatment, energy and environment protection. In this review, the preparation strategies and applications of enzymes-immobilized MOFs are illustrated and the prospects and current challenges are discussed.
Collapse
Affiliation(s)
- Jia-Jing Li
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Li Yin
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Zi-Fan Wang
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Yi-Chen Jing
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Zhuo-Lin Jiang
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Ya Ding
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Huai-Song Wang
- China Parmaceutical University, Pharmaceutical analysis, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing Jiangsu, CHINA
| |
Collapse
|
13
|
Chen M, Lang L, Chen L, Wang X, Shi C, Sun Q, Xu Y, Diwu J, Wang S. Improving In Vivo Uranyl Removal Efficacy of a
Nano‐Metal
Organic Framework by Interior Functionalization with
3‐Hydroxy‐2‐Pyridinone. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mengping Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Lang Lang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Lei Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Xiaomei Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Cen Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Qiwen Sun
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Yigong Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| |
Collapse
|
14
|
Iacomi P, Gulcay-Ozcan E, Pires Conti P, Biswas S, Steunou N, Maurin G, Rioland G, Devautour-Vinot S. MIL-101(Cr) MOF as an Effective Siloxane Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17531-17538. [PMID: 35380791 DOI: 10.1021/acsami.2c02607] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Volatile methylsiloxanes (VMSs) are common silicone degradation byproducts that cause serious concern for the contamination of sensitive electronics and optics, among others. With the goal of fast, online detection of VMS, we herein highlight the mesoporous MIL-101(Cr) MOF as a promising mass sensing layer for integration with a quartz crystal microbalance (QCM), using an in-house modified gravimetric adsorption system capable of achieving extremely low concentrations of siloxane D4 (down to 0.04 ppm), targeting applications for monitoring in indoor spaces and spacecraft. Our developed MIL-101(Cr)@QCM sensor achieves near-perfect reversibility with no hysteresis alongside excellent repeatability over cycling and fast response/recovery times under 1 min. We attribute this capability to optimum host/guest interactions as uncovered through molecular simulations.
Collapse
Affiliation(s)
- Paul Iacomi
- ICGM, Univ. Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| | | | | | - Subharanjan Biswas
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles St Quentin en Yvelines, Université Paris-Saclay, 78035 Versailles, France
| | - Nathalie Steunou
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles St Quentin en Yvelines, Université Paris-Saclay, 78035 Versailles, France
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| | - Guillaume Rioland
- Centre National d'Etudes Spatiales, DTN/QE/LE, 18 Avenue Edouard Belin, 31401 Toulouse, Cedex 09, France
| | | |
Collapse
|
15
|
Liu J, Wang A, Liu S, Yang R, Wang L, Gao F, Zhou H, Yu X, Liu J, Chen C. A Titanium Nitride Nanozyme for pH‐Responsive and Irradiation‐Enhanced Cascade‐Catalytic Tumor Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jiaming Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China University of Chinese Academy of Sciences Beijing 100190 China
| | - Aizhu Wang
- Institute for Advanced Interdisciplinary Research University of Jinan Jinan 250022 China
| | - Shihui Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China University of Chinese Academy of Sciences Beijing 100190 China
| | - Ruiqi Yang
- Institute for Advanced Interdisciplinary Research University of Jinan Jinan 250022 China
| | - Longwei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education School of Medicine Northwest University Xi'an 710069 China
| | - Fene Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China University of Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education School of Medicine Northwest University Xi'an 710069 China
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China University of Chinese Academy of Sciences Beijing 100190 China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research University of Jinan Jinan 250022 China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China University of Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education School of Medicine Northwest University Xi'an 710069 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China University of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
16
|
Yang Z, Qian J, Shan C, Li H, Yin Y, Pan B. Toward Selective Oxidation of Contaminants in Aqueous Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14494-14514. [PMID: 34669394 DOI: 10.1021/acs.est.1c05862] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The presence of diverse pollutants in water has been threating human health and aquatic ecosystems on a global scale. For more than a century, chemical oxidation using strongly oxidizing species was one of the most effective technologies to destruct pollutants and to ensure a safe and clean water supply. However, the removal of increasing amount of pollutants with higher structural complexity, especially the emerging micropollutants with trace concentrations in the complicated water matrix, requires excessive dosage of oxidant and/or energy input, resulting in a low cost-effectiveness and possible secondary pollution. Consequently, it is of practical significance but scientifically challenging to achieve selective oxidation of pollutants of interest for water decontamination. Currently, there are a variety of examples concerning selective oxidation of pollutants in aqueous systems. However, a systematic understanding of the relationship between the origin of selectivity and its applicable water treatment scenarios, as well as the rational design of catalyst for selective catalytic oxidation, is still lacking. In this critical review, we summarize the state-of-the-art selective oxidation strategies in water decontamination and probe the origins of selectivity, that is, the selectivity resulting from the reactivity of either oxidants or target pollutants, the selectivity arising from the accessibility of pollutants to oxidants via adsorption and size exclusion, as well as the selectivity due to the interfacial electron transfer process and enzymatic oxidation. Finally, the challenges and perspectives are briefly outlined to stimulate future discussion and interest on selective oxidation for water decontamination, particularly toward application in real scenarios.
Collapse
Affiliation(s)
- Zhichao Yang
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| | - Jieshu Qian
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chao Shan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| | - Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuyang Yin
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Liu J, Wang A, Liu S, Yang R, Wang L, Gao F, Zhou H, Yu X, Liu J, Chen C. A Titanium Nitride Nanozyme for pH-Responsive and Irradiation-Enhanced Cascade-Catalytic Tumor Therapy. Angew Chem Int Ed Engl 2021; 60:25328-25338. [PMID: 34453387 DOI: 10.1002/anie.202106750] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/08/2021] [Indexed: 11/11/2022]
Abstract
Nanozyme-based catalytic tumor therapy is an emerging therapeutic method with high reactivity in response to tumor microenvironments (TMEs). To overcome the current limitations of deficient catalytic activity of nanozymes, we studied the contributing factors of enzymatic activity based on non-metallic-atom doping and irradiation. Nitrogen doping significantly enhanced the peroxidase activity of Ti-based nanozymes, which was shown experimentally and theoretically. Based on the excellent NIR-adsorption-induced surface plasmon resonance and photothermal effect, the enzymatic activity of TiN nanoparticles (NPs) was further improved under NIR laser irradiation. Hence, an acidic TME-responsive and irradiation-mediated cascade nanocatalyst (TLGp) is presented by using TiN-NP-encapsulated liposomes linked with pH-responsive PEG-modified glucose oxidase (GOx). The integration of pH-responsive GOx-mediated H2 O2 self-supply, nitrogen-doping, and irradiation-enhanced enzymatic activity of TiN NPs and mild-photothermal therapy enables an effective tumor inhibition by TLGp with minimal side effects in vivo.
Collapse
Affiliation(s)
- Jiaming Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Aizhu Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| | - Shihui Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruiqi Yang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| | - Longwei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Fene Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, China.,Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, China.,Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
18
|
Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials 2021; 275:120951. [PMID: 34119883 DOI: 10.1016/j.biomaterials.2021.120951] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023]
Abstract
Nanozymes are next-generation artificial enzymes having distinguished features such as cost-effective, enhanced surface area, and high stability. However, limited selectivity and moderate activity of nanozymes in the biochemical environment hindered their usage and encouraged researchers to seek alternative catalytic materials. Recently, metal-organic frameworks (MOFs) characterized by distinct crystalline porous structures with large surface area, tunable pores, and uniformly dispersed active sites emerged, that filled the gap between natural enzymes and nanozymes. Moreover, by selecting suitable metal ions and organic linkers, MOFs can be designed for effective bacterial theranostics. In this review, we briefly presented the design and fabrication of MOFs. Then, we demonstrated the applications of MOFs in bacterial theranostics and their safety considerations. Finally, we proposed the major obstacles and opportunities for further development in research on the interface of nanozymes and MOFs. We expect that MOFs based nanozymes with unique physicochemical and intrinsic enzyme-mimicking properties will gain broad interest in both fundamental research and biomedical applications.
Collapse
|
19
|
Mialane P, Mellot-Draznieks C, Gairola P, Duguet M, Benseghir Y, Oms O, Dolbecq A. Heterogenisation of polyoxometalates and other metal-based complexes in metal–organic frameworks: from synthesis to characterisation and applications in catalysis. Chem Soc Rev 2021; 50:6152-6220. [DOI: 10.1039/d0cs00323a] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides a thorough overview of composites with molecular catalysts (polyoxometalates, or organometallic or coordination complexes) immobilised into MOFs via non-covalent interactions.
Collapse
Affiliation(s)
- P. Mialane
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - C. Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques
- UMR CNRS 8229
- Collège de France
- Sorbonne Université
- PSL Research University
| | - P. Gairola
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - M. Duguet
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - Y. Benseghir
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - O. Oms
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - A. Dolbecq
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| |
Collapse
|
20
|
Wang L, Liu G, Ren Y, Feng Y, Zhao X, Zhu Y, Chen M, Zhu F, Liu Q, Chen X. Integrating Target-Triggered Aptamer-Capped HRP@Metal-Organic Frameworks with a Colorimeter Readout for On-Site Sensitive Detection of Antibiotics. Anal Chem 2020; 92:14259-14266. [PMID: 32998507 DOI: 10.1021/acs.analchem.0c03723] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Colorimetric analytical strategies exhibit great promise in developing on-site detection methods for antibiotics, while substantial recent research efforts remain problematic due to dissatisfactory sensitivity. Taking this into account, we develop a novel colorimetric sensor for in-field detection of antibiotics by using aptamer (Apt)-capped and horseradish peroxidise (HRP)-embedded zeolitic metal azolate framework-7 (MAF-7) (Apt/HRP@MAF-7) as target recognition and signal transduction, respectively. With the substrate 3,3',5,5'-tetramethylbenzidine (TMB)-impregnated chip attached on the lid, the assay can be conveniently operated in a tube and reliably quantified by a handheld colorimeter. Hydrophilic MAF-7 can not only prevent HRP aggregation but also enhance HRP activity, which would benefit its detection sensitivity. Besides, the catalytic activity of HRP@MAF-7 can be sealed through assembling with Apt and controllably released based on the bioresponsivity via forming target-Apt complexes. Consequently, a significant color signal can be observed owing to the oxidation of colorless TMB to its blue-green oxidized form oxTMB. As a proof-of-concept, portable detection of streptomycin was favorably achieved with excellent sensitivity, which is superior to most reported methods and commercial kits. The developed strategy affords a new design pattern for developing on-site antibiotics assays and immensely extends the application of enzyme embedded metal-organic framework composites.
Collapse
Affiliation(s)
- Lumin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Guangjuan Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yuxiang Ren
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yinghui Feng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xinyi Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yuqiu Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Miao Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China.,School of Life Science, Central South University, Changsha 410013, Hunan, China
| | - Fawei Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
21
|
Zhong H, Lo W, Man T, Williams BP, Li D, Chen S, Pei H, Li L, Tsung C. Stabilizing DNAzymes through Encapsulation in a Metal–Organic Framework. Chemistry 2020; 26:12931-12935. [DOI: 10.1002/chem.202002178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Huiye Zhong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Wei‐Shang Lo
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Benjamin P. Williams
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Dan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Sheng‐Yu Chen
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Pudong, Shanghai 201210 P.R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Chia‐Kuang Tsung
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
22
|
Huang S, Kou X, Shen J, Chen G, Ouyang G. “Armor‐Plating” Enzymes with Metal–Organic Frameworks (MOFs). Angew Chem Int Ed Engl 2020; 59:8786-8798. [DOI: 10.1002/anie.201916474] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital Sun Yat-sen University Guangzhou 510120 China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital Sun Yat-sen University Guangzhou 510120 China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
- Chemistry College, Center of Advanced Analysis and Gene Sequencing Zhengzhou University, Kexue Avenue 100 Zhengzhou 450001 China
| |
Collapse
|
23
|
Huang S, Kou X, Shen J, Chen G, Ouyang G. “Panzerung” von Enzymen mit Metall‐organischen Gerüsten. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916474] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital Sun Yat-sen University Guangzhou 510120 China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital Sun Yat-sen University Guangzhou 510120 China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
- Chemistry College, Center of Advanced Analysis and Gene Sequencing Zhengzhou University, Kexue Avenue 100 Zhengzhou 450001 China
| |
Collapse
|
24
|
Hu M, Wang Y, Yang J, Sun Y, Xing G, Deng R, Hu X, Zhang G. Competitive electrochemical immunosensor for maduramicin detection by multiple signal amplification strategy via hemin@Fe-MIL-88NH 2/AuPt. Biosens Bioelectron 2019; 142:111554. [PMID: 31382098 DOI: 10.1016/j.bios.2019.111554] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Maduramicin (MD) is a type of monoglycoside polyether ionophore antibiotic that can effectively treat coccidiosis and facilitate animal growth. However, its extensive and excessive use brings potential risk to human health. Herein, an electrochemical immunosensor based on indirect competitive format was fabricated for analysis of MD residue in eggs by a multiple signal amplification system. Initially, Au nanoparticles were deposited onto glassy carbon electrode surface to load the coating antigen MD-BSA and to improve conductivity. Then the signal amplification platform was constructed by encapsulating hemin into Fe-MIL-88 NH2 metal-organic frameworks (hemin@MOFs), and then the obtained composites were decorated with AuPt nanoparticles. The synthesized hemin@MOFs/AuPt was not only used as a signal amplification mediator, but also utilized as a carrier for immobilization of horseradish peroxidase-conjugated affinipure goat anti-mouse antibody (Ab2-HRP) and horseradish peroxidase (HRP). The constructed hemin@MOFs/AuPt-Ab2-HRP bioconjugates could effectively amplify the current signal since hemin@MOFs, AuPt and HRP all exhibited high catalytic activity towards the hydrogen peroxide. Moreover, the established immunosensor showed high sensitivity and stability during the detection procedure. With the synergistic catalytic effect of hemin@MOFs, AuPt and HRP, a wide detection range of 0.1-50 ng mL-1 and a low detection limit of 0.045 ng mL-1 were achieved (S/N = 3), respectively. Ultimately, the developed method displayed excellent performance in practical applications, providing a promising probability to detect other veterinary drug residues to guarantee food safety.
Collapse
Affiliation(s)
- Mei Hu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Yao Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jifei Yang
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Yaning Sun
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Guangxu Xing
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Ruiguang Deng
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Xiaofei Hu
- Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China.
| | - Gaiping Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Key Laboratory for Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Science, Zhengzhou, 450002, China; Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
25
|
Wan MM, Xu TT, Chi B, Wang M, Huang Y, Wang Q, Li T, Yan WQ, Chen H, Xu P, Mao C, Zhao B, Shen J, Xu H, Shi DQ. A Safe and Efficient Strategy for the Rapid Elimination of Blood Lead In Vivo Based on a Capture–Fix–Separate Mechanism. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mi Mi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Ting Ting Xu
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Food Science and Light IndustryJiangsu National Synergetic Innovation Center for Advanced, MaterialsNanjing Tech University Nanjing 211816 China
| | - Meng Wang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Yangyang Huang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Wen Qiang Yan
- Department of Sports Medicine and Adult Reconstructive SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Ping Xu
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Food Science and Light IndustryJiangsu National Synergetic Innovation Center for Advanced, MaterialsNanjing Tech University Nanjing 211816 China
| | - Dong Quan Shi
- Department of Sports Medicine and Adult Reconstructive SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| |
Collapse
|
26
|
Wan MM, Xu TT, Chi B, Wang M, Huang Y, Wang Q, Li T, Yan WQ, Chen H, Xu P, Mao C, Zhao B, Shen J, Xu H, Shi DQ. A Safe and Efficient Strategy for the Rapid Elimination of Blood Lead In Vivo Based on a Capture–Fix–Separate Mechanism. Angew Chem Int Ed Engl 2019; 58:10582-10586. [DOI: 10.1002/anie.201904044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/05/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Mi Mi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Ting Ting Xu
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Food Science and Light IndustryJiangsu National Synergetic Innovation Center for Advanced, MaterialsNanjing Tech University Nanjing 211816 China
| | - Meng Wang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Yangyang Huang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Wen Qiang Yan
- Department of Sports Medicine and Adult Reconstructive SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Ping Xu
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Food Science and Light IndustryJiangsu National Synergetic Innovation Center for Advanced, MaterialsNanjing Tech University Nanjing 211816 China
| | - Dong Quan Shi
- Department of Sports Medicine and Adult Reconstructive SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| |
Collapse
|
27
|
Zhou F, Luo J, Qi B, Chen X, Wan Y. Horseradish Peroxidase Immobilized on Multifunctional Hybrid Microspheres for Aflatoxin B1 Removal: Will Enzymatic Reaction be Enhanced by Adsorption? Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Fangfang Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Benkun Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|