1
|
Liao C, Bernardi S, Bailey CG, Chao IH, Chien SY, Wang G, Sun YH, Tang S, Zheng J, Yi J, Yu MH, Russo SP, Yen HW, McCamey DR, Kennedy BJ, Widmer-Cooper A, Chueh CC, Ho-Baillie AWY. Piperidine and Pyridine Series Lead-Free Dion-Jacobson Phase Tin Perovskite Single Crystals and Their Applications for Field-Effect Transistors. ACS NANO 2024; 18:14176-14186. [PMID: 38768371 DOI: 10.1021/acsnano.3c11125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Two-dimensional (2D) organic-inorganic metal halide perovskites have gained immense attention as alternatives to three-dimensional (3D) perovskites in recent years. The hydrophobic spacers in the layered structure of 2D perovskites make them more moisture-resistant than 3D perovskites. Moreover, they exhibit unique anisotropic electrical transport properties due to a structural confinement effect. In this study, four lead-free Dion-Jacobson (DJ) Sn-based phase perovskite single crystals, 3AMPSnI4, 4AMPSnI4, 3AMPYSnI4, and 4AMPYSnI4 [AMP = (aminomethyl)-piperidinium, AMPY = (aminomethyl)pyridinium] are reported. Results reveal structural differences between them impacting the resulting optical properties. Namely, higher octahedron distortion results in a higher absorption edge. Density functional theory (DFT) is also performed to determine the trends in energy band diagrams, exciton binding energies, and formation energies due to structural differences among the four single crystals. Finally, a field-effect transistor (FET) based on 4AMPSnI4 is demonstrated with a respectable hole mobility of 0.57 cm2 V-1 s-1 requiring a low threshold voltage of only -2.5 V at a drain voltage of -40 V. To the best of our knowledge, this is the third DJ-phase perovskite FET reported to date.
Collapse
Affiliation(s)
- Chwenhaw Liao
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stefano Bernardi
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Christopher G Bailey
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
- ARC Centre of Excellence in Exciton Science, School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - I Hsiang Chao
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Su-Ying Chien
- Instrumentation Center, National Taiwan University, Taipei 106, Taiwan
| | - Guoliang Wang
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yi-Hsuan Sun
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Shi Tang
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jianghui Zheng
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jianpeng Yi
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ming-Hsuan Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Salvy P Russo
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Hung-Wei Yen
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Dane R McCamey
- ARC Centre of Excellence in Exciton Science, School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Brendan James Kennedy
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Asaph Widmer-Cooper
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Anita W Y Ho-Baillie
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
2
|
Chen CH, Yu MH, Wang YY, Tseng YC, Chao IH, Ni IC, Lin BH, Lu YJ, Chueh CC. Enhancing the Performance of 2D Tin-Based Pure Red Perovskite Light-Emitting Diodes through the Synergistic Effect of Natural Antioxidants and Cyclic Molecular Additives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307774. [PMID: 38200683 DOI: 10.1002/smll.202307774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Tin (Sn)-based perovskites are being investigated in many optoelectronic applications given their similar valence electron configuration to that of lead-based perovskites and the potential environmental hazards of lead-based perovskites. However, the formation of high-quality Sn-based perovskite films faces several challenges, mainly due to the easy oxidation of Sn2+ to Sn4+ and the fast crystallization rate. Here, to develop an environmentally friendly process for Sn-based perovskite fabrication, a series of natural antioxidants are studied as additives and ascorbic acid (VitC) is found to have a superior ability to inhibit the oxidation problem. A common cyclic molecule, 18-Crown-6, is further added as a second additive, which synergizes with VitC to significantly reduce the nonradiative recombination pathways in the PEA2SnI4 film. This synergistic effect greatly improves the performance of 2D red Sn-based PeLED, with a maximum external quantum efficiency of 1.87% (≈9 times that of the pristine device), a purer color, and better bias stability. This work demonstrates the potential of the dual-additive approach in enhancing the performance of 2D Sn-based PeLEDs, while the use of these environmentally friendly additives contributes to their future sustainability.
Collapse
Affiliation(s)
- Chiung-Han Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ming-Hsuan Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yen-Yu Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Cheng Tseng
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - I-Hsiang Chao
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - I-Chih Ni
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
| | - Bi-Hsuan Lin
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yu-Jung Lu
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
3
|
Liu Y, Guo J, Zhou H, Li C, Guo X. Correlating π-π Stacking of Aromatic Diammoniums with Stability and Dimensional Reduction of Dion-Jacobson 2D Perovskites. J Am Chem Soc 2024; 146:8198-8205. [PMID: 38478884 DOI: 10.1021/jacs.3c12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Dion-Jacobson (DJ) phase 2D perovskites with various aromatic diammonium cations, potentially possessing high stability, have been developed for optoelectronics. However, their stability does not meet initial expectations, and some of them even easily degrade into lower-dimensional structures. Underlying the stability mechanism and dimensional reduction of these DJ 2D perovskites remains elusive. Herein, we report that π-π stacking intensity between aromatic cations determines structural stability and dimensional variation of DJ 2D perovskites by investigating nine benzene diammoniums (BDAs)-derived low-dimensional perovskites. The BDAs without intermolecular π-π stacking form stable DJ 2D perovskites, while those showing strong π-π stacking tend to generate 1D and 0D architectures. Furthermore, the π-π stacking intensity highly relies on molecular symmetry and electrostatic potential of BDAs; namely, asymmetry and small dipole moment facilitate alleviating the π-π stacking, leading to the formation of DJ 2D perovskites and vice versa. Our findings establish the relationship of aromatic diammonium structure-π-π stacking interaction-perovskite dimensionality, which can guide the design of stable DJ 2D perovskites and the manipulation of perovskite dimensionality for various optoelectronic applications.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
| | - Junxue Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Hongpeng Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Shafiq A, Adnan M, Hussain R, Irshad Z, Farooq U, Muhammad S. Molecular Engineering of Anthracene Core-Based Hole-Transporting Materials for Organic and Perovskite Photovoltaics. ACS OMEGA 2023; 8:35937-35955. [PMID: 37810664 PMCID: PMC10551914 DOI: 10.1021/acsomega.3c03790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
Anthracene core-based hole-transporting material containing TIPs (triisopropylsilylacetylene) has been spotlighted as potential donors for perovskite solar cells (SCs) due to their appropriate energy levels, efficient hole transport capacity, high stability, and high power conversion efficiency. Herein, we have efficiently designed seven new highly conjugated A-B-D-C-D molecules (AS1-AS7) containing an anthracene core. We used end-capped modifications of donor units with acceptor units on one side and then theoretically characterized them for their appropriate use for SC applications. Modern quantum chemistry techniques have theoretically described the R (reference molecule) and developed (AS1-AS7) molecules. Moreover, the proposed (AS1-AS7) molecules are explored with density functional theory (DFT) and time-dependent density functional theory (TD-DFT) employing B3LYP/6-31G(d,p), and numerous parameters like photovoltaic, optical and electronic characteristics, frontier molecular orbital, excitation, binding and reorganization (λe and λh) energies, open circuit voltage, light harvesting efficiency, transition density matrix, fill factor, and the density of states have been studied. End-capped modification causes a smaller band gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), higher UV-vis absorption maxima, tuned energy levels, lower binding and reorganizational (λe and λh) energies, and larger Voc values in proposed (AS1-AS7) molecules than R. AS5 has a remarkable absorption maximum of 495.94 nm and a narrow optimal energy gap (Eg) of 1.46 eV. Furthermore, a complex study of AS5:PC61BM has revealed extraordinary charge shifting at the HOMO (AS5)-LUMO (PC61BM) interface. Our results suggested that newly developed anthracene core-based compounds (AS1-AS7) would be effective candidates with excellent photovoltaic and optoelectronic properties and could be employed in future organic and perovskite SC applications.
Collapse
Affiliation(s)
- Aaida Shafiq
- Department
of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Muhammad Adnan
- Graduate
School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Riaz Hussain
- Department
of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Zobia Irshad
- Graduate
School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Umar Farooq
- School
of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Shabbir Muhammad
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
5
|
Shao T, Ni HF, Su CY, Jia QQ, Xie LY, Fu DW, Lu HF. Integrated Reversible Thermochromism, High T c , Dielectric Switch and Narrow Band Gap in One Multifunctional Ferroic. Chemistry 2022; 28:e202202533. [PMID: 36082618 DOI: 10.1002/chem.202202533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 12/14/2022]
Abstract
Organic-inorganic Hybrid (OIH) materials for multifunctional switchable applications have attracted enormous attention in recent years due to their excellent optoelectronic properties and good structural tunability. However, it still remains challenging to fabricate one simple OIH compound with multi-functionals properties, such as dielectric switching, thermochromic properties, semiconductor characteristics and ferroelasticity. Under this context, we successfully synthesized [2-(2-fluorophenyl)ethan-1- ammonium]2 SnBr6 (compound 1), which has a higher phase transition temperature of 427.7 K. Additionally, it exhibits a semiconducting property with an indirect band gap of 2.36 eV. Combining ferroelastic, narrow band gap, thermochromic, and dielectric properties, compound 1 can be considered as a rarely reported multi-functional ferroelastic material, which is expected to give inspiration for broadening the applications in the smart devices field.
Collapse
Affiliation(s)
- Ting Shao
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Chang-Yuan Su
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P.R. China
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Li-Yan Xie
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China.,Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P.R. China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| |
Collapse
|
6
|
Elattar A, Li W, Suzuki H, Kambe T, Nishikawa T, Kyaw AKK, Hayashi Y. Single Crystals of Mixed-Cation Copper-Based Perovskite with Trimodal Bandgap Behavior. Chemistry 2022; 28:e202104316. [PMID: 35253943 DOI: 10.1002/chem.202104316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 01/08/2023]
Abstract
Two-dimensional (2D) hybrid perovskites with novel functionalities and structural diversity are a perfect platform for emerging optoelectronic devices such as photodetectors, light-emitting diodes, and solar cells. Here, we demonstrate that excess concentration of Cesium bromide (CsBr) is key to the formation of easily exfoliated 2D Cs2 Cu(Cl/Br)4 perovskite crystal. Furthermore, by employing this trick to 2D perovskite MA2 Cu(Cl/Br)4 (MA=methylammonium), we achieve a phase-pure easily exfoliated 2D mixed-cation (MA/Cs)2 Cu(Cl/Br)4 perovskite crystal, which exhibits reduced bandgap (1.53 eV) with ferromagnetic behavior and photovoltaic property. The resultant mixed-cation structured device reveals enhanced efficiency compared to all MA and all Cs counterparts. These findings demonstrate the importance of cation-engineering in developing innovative materials with novel properties.
Collapse
Affiliation(s)
- Amr Elattar
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan.,Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Cairo, Egypt
| | - Wenhui Li
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting and Department of Electrical & Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hiroo Suzuki
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Takashi Kambe
- Department of Physics, Okayama University, Okayama, 700-8530, Japan
| | - Takeshi Nishikawa
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Aung Ko Ko Kyaw
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting and Department of Electrical & Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.,Shenzhen Planck Innovation Technology Co., Ltd, No. 8, Liuhe Road, Longgang District, Shenzhen, 518100, Guangdong, P. R. China
| | - Yasuhiko Hayashi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
7
|
Peng L, Xie Y, Yang C. Insight into the photoelectrical properties of metal adsorption on a two-dimensional organic–inorganic hybrid perovskite surface: theoretical and experimental research. RSC Adv 2022; 12:5595-5611. [PMID: 35425539 PMCID: PMC8982095 DOI: 10.1039/d1ra04557a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
In order to study the photoelectric properties of the adsorption of different metal atoms on a two-dimensional (2D) perovskite surface, in this article, we built many models of Ag, Au, and Bi atoms adsorbed on 2D perovskite. We studied the rules influencing 2D perovskite adsorbing metal atoms with different n values (the n value is the number of inorganic layers of 2D perovskite; here n = 1, 2, and 3). Based on n = 2 2D perovskite, we successively used Ag, Au, and Bi metal atoms to adsorb on the 2D perovskite surface. Firstly, we calculated their adsorption energies. Based on the lowest energy principle, we found that Bi atom adsorption on the 2D perovskite surface gave the most stable structure among the three metal adsorptions because the energy of the Bi adsorption system was the smallest. Secondly, the electron transport process takes place from the s to the p orbital when Au and Ag atoms adsorb on the 2D perovskite surface, but in the Bi atom adsorption, the electron transport process takes place from the p to the p orbital, because the p–p orbital transport energy is lower than that of the s–p orbital. Therefore, Bi atom adsorption on the 2D perovskite surface can improve charge carrier transfer. Thirdly, we calculated the bond angles and bond energies of different metal adsorptions on 2D perovskite. Bi adsorption has greater interaction with the surface atoms of 2D perovskite than Ag or Au atom adsorption, which effectively enhances the surface polarization effects, and enhances the photoelectric properties of 2D perovskite. The light absorption spectrum further confirms that Bi atom adsorption has a greater impact on the 2D perovskite than the action of Ag or Au adsorption. Finally, in an experiment, we fabricated a 2D perovskite solar cell with an ITO/PEDOT:PSS/2D perovskite/PEI/Ag (Au, Bi) structure. The Bi electrode solar cell achieves the highest photoelectric conversion efficiency (PCE) of 15.16% among the three cells with forward scanning, which is consistent with the theoretical analysis. We believe that the adsorption of metals like Bi on a 2D perovskite surface as an electrode is conducive to improving the charge transport performance. Bi atom adsorption on a 2D perovskite surface structure has the minimum adsorption energy. When it uses on the solar cell electrode, the 2D perovskite solar cell of ITO/PEDOT:PSS/2D perovskite/PEI/Bi structure exhibits the highest photoelectric conversion efficiency (PCE) of 15.16%.![]()
Collapse
Affiliation(s)
- Liping Peng
- School of Physics and Telecommunications, Huanggang Normal University, Huangzhou, Hubei, 43800, P. R. China
| | - Yulin Xie
- School of Physics and Telecommunications, Huanggang Normal University, Huangzhou, Hubei, 43800, P. R. China
| | - Changquan Yang
- School of Physics and Telecommunications, Huanggang Normal University, Huangzhou, Hubei, 43800, P. R. China
| |
Collapse
|
8
|
Pitaro M, Tekelenburg EK, Shao S, Loi MA. Tin Halide Perovskites: From Fundamental Properties to Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105844. [PMID: 34626031 PMCID: PMC11469212 DOI: 10.1002/adma.202105844] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/01/2021] [Indexed: 05/24/2023]
Abstract
Metal halide perovskites have unique optical and electrical properties, which make them an excellent class of materials for a broad spectrum of optoelectronic applications. However, it is with photovoltaic devices that this class of materials has reached the apotheosis of popularity. High power conversion efficiencies are achieved with lead-based compounds, which are toxic to the environment. Tin-based perovskites are the most promising alternative because of their bandgap close to the optimal value for photovoltaic applications, the strong optical absorption, and good charge carrier mobilities. Nevertheless, the low defect tolerance, the fast crystallization, and the oxidative instability of tin halide perovskites currently limit their efficiency. The aim of this review is to give a detailed overview of the crystallographic, photophysical, and optoelectronic properties of tin-based perovskite compounds in their multiple forms from 3D to low-dimensional structures. At the end, recent progress in tin-based perovskite solar cells are reviewed, mainly focusing on the detail of the strategies adopted to improve the device performances. For each subtopic, the current challenges and the outlook are discussed, with the aim to stimulate the community to address the most important issues in a concerted manner.
Collapse
Affiliation(s)
- Matteo Pitaro
- Photophysics and OptoElectronicsZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Eelco Kinsa Tekelenburg
- Photophysics and OptoElectronicsZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Shuyan Shao
- Photophysics and OptoElectronicsZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Maria Antonietta Loi
- Photophysics and OptoElectronicsZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| |
Collapse
|
9
|
Zhao R, Sabatini RP, Zhu T, Wang S, Morteza Najjarian A, Johnston A, Lough AJ, Hoogland S, Sargent EH, Seferos DS. Rigid Conjugated Diamine Templates for Stable Dion-Jacobson-Type Two-Dimensional Perovskites. J Am Chem Soc 2021; 143:19901-19908. [PMID: 34788034 DOI: 10.1021/jacs.1c09515] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hybrid organic-inorganic perovskites (HOIPs) have garnered widespread interest, yet stability remains a critical issue that limits their further application. Compared to their three-dimensional (3D) counterparts, two-dimensional (2D)-HOIPs exhibit improved stability. 2D-HOIPs are also appealing because their structural and optical properties can be tuned according to the choice of organic ligand, with monovalent or divalent ligands forming Ruddlesden-Popper (RP) or Dion-Jacobson (DJ)-type 2D perovskites, respectively. Unlike RP-type 2D perovskites, DJ-type 2D perovskites do not contain a van der Waals gap between the 2D layers, leading to improved stability. However, bifunctional organic ligands currently used to develop DJ-type 2D perovskites are limited to commercially available aliphatic and single-ring aromatic ammonium cations. Large conjugated organic ligands are in demand for their semiconducting properties and their potential to improve materials stability further. In this manuscript, we report the design and synthesis of a new set of larger conjugated diamine ligands and their incorporation into DJ-type 2D perovskites. Compared with analogous RP-type 2D perovskites, DJ 2D perovskites reported here show blue-shifted, narrower emissions and significantly improved stability. By changing the structure of rings (benzene vs thiophene) and substituents, we develop structure-property relationships, finding that fluorine substitution enhances crystallinity. Single-crystal structure analysis and density functional theory calculations indicate that these changes are due to strong electrostatic interactions between the organic templates and inorganic layers as well as the rigid backbone and strong π-π interaction between the organic ligands themselves. These results illustrate that targeted engineering of the diamine ligands can enhance the stability of DJ-type 2D perovskites.
Collapse
Affiliation(s)
- Ruyan Zhao
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Randy P Sabatini
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Tong Zhu
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Sasa Wang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Amin Morteza Najjarian
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Andrew Johnston
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Alan J Lough
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sjoerd Hoogland
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
10
|
Ajayakumar A, Muthu C, V Dev A, Pious JK, Vijayakumar C. Two-Dimensional Halide Perovskites: Approaches to Improve Optoelectronic Properties. Chem Asian J 2021; 17:e202101075. [PMID: 34738734 DOI: 10.1002/asia.202101075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Indexed: 11/07/2022]
Abstract
Three-dimensional (3D) halide perovskites (HPs) are in the spotlight of materials science research due to their excellent photonic and electronic properties suitable for functional device applications. However, the intrinsic instability of these materials stands as a hurdle in the way to their commercialization. Recently, two-dimensional (2D) HPs have emerged as an alternative to 3D perovskites, thanks to their excellent stability and tunable optoelectronic properties. Unlike 3D HPs, a library of 2D perovskites could be prepared by utilizing the unlimited number of organic cations since their formation is not within the boundary of the Goldschmidt tolerance factor. These materials have already proved their potential for applications such as solar cells, light-emitting diodes, transistors, photodetectors, photocatalysis, etc. However, poor charge carrier separation and transport efficiencies of 2D HPs are the bottlenecks resulting in inferior device performances compared to their 3D analogs. This minireview focuses on how to address these issues through the adoption of different strategies and improve the optoelectronic properties of 2D perovskites.
Collapse
Affiliation(s)
- Avija Ajayakumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Chinnadurai Muthu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Amarjith V Dev
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Johnpaul K Pious
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Chakkooth Vijayakumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
11
|
Liang A, Wang K, Gao Y, Finkenauer BP, Zhu C, Jin L, Huang L, Dou L. Highly Efficient Halide Perovskite Light‐Emitting Diodes via Molecular Passivation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Aihui Liang
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
- Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
| | - Kang Wang
- Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
| | - Yao Gao
- Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
| | - Blake P. Finkenauer
- Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
| | - Chenhui Zhu
- Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Linrui Jin
- Department of Chemistry Purdue University West Lafayette IN 47907 USA
| | - Libai Huang
- Department of Chemistry Purdue University West Lafayette IN 47907 USA
| | - Letian Dou
- Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
- Birck Nanotechnology Center Purdue University West Lafayette IN USA
| |
Collapse
|
12
|
Liang A, Wang K, Gao Y, Finkenauer BP, Zhu C, Jin L, Huang L, Dou L. Highly Efficient Halide Perovskite Light‐Emitting Diodes via Molecular Passivation. Angew Chem Int Ed Engl 2021; 60:8337-8343. [PMID: 33497510 DOI: 10.1002/anie.202100243] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Aihui Liang
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
- Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
| | - Kang Wang
- Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
| | - Yao Gao
- Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
| | - Blake P. Finkenauer
- Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
| | - Chenhui Zhu
- Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Linrui Jin
- Department of Chemistry Purdue University West Lafayette IN 47907 USA
| | - Libai Huang
- Department of Chemistry Purdue University West Lafayette IN 47907 USA
| | - Letian Dou
- Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
- Birck Nanotechnology Center Purdue University West Lafayette IN USA
| |
Collapse
|
13
|
Dai Y, Tüysüz H. Lead-Free Cs 3 Bi 2 Br 9 Perovskite as Photocatalyst for Ring-Opening Reactions of Epoxides. CHEMSUSCHEM 2019; 12:2587-2592. [PMID: 30994264 DOI: 10.1002/cssc.201900716] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Herein, an innovative approach was developed by using stable, lead-free halide perovskite for solar-driven organic synthesis. The ring-opening reaction of epoxides was chosen as a model system for the synthesis of value-added β-alkoxy alcohols, which require energy-intensive process conditions and corrosive, strong acids for conventional synthesis. The developed concept included the in situ preparation of Cs3 Bi2 Br9 and its simultaneous application as photocatalyst for epoxide alcoholysis under visible-light irradiation in air at 293 K, with exceptional high activity and selectivity ≥86 % for β-alkoxy alcohols and thia-compounds. The Cs3 Bi2 Br9 photocatalyst exhibited good stability and recyclability. In contrast, the lead-based perovskite showed a conversion rate of only 1 %. The origin of the unexpected catalytic behavior was attributed to the combination of the photocatalytic process and the presence of suitable Lewis-acidic centers on the surface of the bismuth halide perovskite photocatalyst.
Collapse
Affiliation(s)
- Yitao Dai
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|