1
|
Eftekhari K, Parakhonskiy BV, Grigoriev D, Skirtach AG. Advances in Nanoarchitectonics: A Review of "Static" and "Dynamic" Particle Assembly Methods. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1051. [PMID: 38473523 PMCID: PMC10935451 DOI: 10.3390/ma17051051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Particle assembly is a promising technique to create functional materials and devices from nanoscale building blocks. However, the control of particle arrangement and orientation is challenging and requires careful design of the assembly methods and conditions. In this study, the static and dynamic methods of particle assembly are reviewed, focusing on their applications in biomaterial sciences. Static methods rely on the equilibrium interactions between particles and substrates, such as electrostatic, magnetic, or capillary forces. Dynamic methods can be associated with the application of external stimuli, such as electric fields, magnetic fields, light, or sound, to manipulate the particles in a non-equilibrium state. This study discusses the advantages and limitations of such methods as well as nanoarchitectonic principles that guide the formation of desired structures and functions. It also highlights some examples of biomaterials and devices that have been fabricated by particle assembly, such as biosensors, drug delivery systems, tissue engineering scaffolds, and artificial organs. It concludes by outlining the future challenges and opportunities of particle assembly for biomaterial sciences. This review stands as a crucial guide for scholars and professionals in the field, fostering further investigation and innovation. It also highlights the necessity for continuous research to refine these methodologies and devise more efficient techniques for nanomaterial synthesis. The potential ramifications on healthcare and technology are substantial, with implications for drug delivery systems, diagnostic tools, disease treatments, energy storage, environmental science, and electronics.
Collapse
Affiliation(s)
- Karaneh Eftekhari
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Bogdan V. Parakhonskiy
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Dmitry Grigoriev
- Multifunctional Colloids and Coatings, Division Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam-Golm, Germany;
| | - Andre G. Skirtach
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
2
|
Wang Y, Yan Q. CO 2 -Fueled Transient Breathing Nanogels that Couple Nonequilibrium Catalytic Polymerization. Angew Chem Int Ed Engl 2023; 62:e202217001. [PMID: 36738302 DOI: 10.1002/anie.202217001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
Here we present a "breathing" nanogel that is fueled by CO2 gas to perform temporally programmable catalytic polymerization. The nanogel is composed of common frustrated Lewis pair polymers (FLPs). Dynamic CO2 -FLP gas-bridging bonds endow the nanogel with a transient volume contraction, and the resulting proximal effect of bound FLPs unlocks its catalytic capacity toward CO2 . Reverse gas depletion via a CO2 -participated polymerization can induce a reverse nanogel expansion, which shuts down the catalytic activity. Control of external factors (fuel level, temperature or additives) can regulate the breathing period, amplitude and lifecycle, so as to affect the catalytic polymerization. Moreover, editing the nanogel breathing procedure can sequentially evoke the copolymerization of CO2 with different epoxide monomers preloaded therein, which allows to obtain block-tunable copolycarbonates that are unachievable by other methods. This synthetic dissipative system would be function as a prototype of gas-driven nanosynthesizer.
Collapse
Affiliation(s)
- Yixin Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
3
|
Kriebisch BAK, Kriebisch CME, Bergmann AM, Wanzke C, Tena‐Solsona M, Boekhoven J. Tuning the Kinetic Trapping in Chemically Fueled Self‐Assembly**. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Brigitte A. K. Kriebisch
- School of Natural Science Department of Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Christine M. E. Kriebisch
- School of Natural Science Department of Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Alexander M. Bergmann
- School of Natural Science Department of Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Caren Wanzke
- School of Natural Science Department of Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Marta Tena‐Solsona
- School of Natural Science Department of Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Job Boekhoven
- School of Natural Science Department of Chemistry Technische Universität München Lichtenbergstraße 4 85748 Garching bei München Germany
| |
Collapse
|
4
|
Hossain MM, Jayalath IM, Baral R, Hartley CS. Carbodiimide‐Induced Formation of Transient Polyether Cages**. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Isuru M. Jayalath
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| | - Renuka Baral
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| | - C. Scott Hartley
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| |
Collapse
|
5
|
Kubota R, Torigoe S, Hamachi I. Temporal Stimulus Patterns Drive Differentiation of a Synthetic Dipeptide-Based Coacervate. J Am Chem Soc 2022; 144:15155-15164. [PMID: 35943765 DOI: 10.1021/jacs.2c05101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The fate of living cells often depends on their processing of temporally modulated information, such as the frequency and duration of various signals. Synthetic stimulus-responsive systems have been intensely studied for >50 years, but it is still challenging for chemists to create artificial systems that can decode dynamically oscillating stimuli and alter the systems' properties/functions because of the lack of sophisticated reaction networks that are comparable with biological signal transduction. Here, we report morphological differentiation of synthetic dipeptide-based coacervates in response to temporally distinct patterns of the light pulse. We designed a simple cationic diphenylalanine peptide derivative to enable the formation of coacervates. The coacervates concentrated an anionic methacrylate monomer and a photoinitiator, which provided a unique reaction environment and facilitated light-triggered radical polymerization─even in air. Pulsed light irradiation at 9.0 Hz (but not at 0.5 Hz) afforded anionic polymers. This dependence on the light pulse patterns is attributable to the competition of reactive radical intermediates between the methacrylate monomer and molecular oxygen. The temporal pulse pattern-dependent polymer formation enabled the coacervates to differentiate in terms of morphology and internal viscosity, with an ultrasensitive switch-like mode. Our achievements will facilitate the rational design of smart supramolecular soft materials and are insightful regarding the synthesis of sophisticated chemical cells.
Collapse
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo̅-ku, Kyoto 615-8510, Japan
| | - Shogo Torigoe
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo̅-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo̅-ku, Kyoto 615-8510, Japan.,JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Katsura, Nishikyo̅-ku, Kyoto 615-8530, Japan
| |
Collapse
|
6
|
Sharma C, Walther A. Self-Regulating Colloidal Co-Assemblies That Accelerate Their Own Destruction via Chemo-Structural Feedback. Angew Chem Int Ed Engl 2022; 61:e202201573. [PMID: 35235231 PMCID: PMC9311650 DOI: 10.1002/anie.202201573] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 11/13/2022]
Abstract
Biological self‐assemblies self‐ and cross‐regulate each other via chemical reaction networks (CRNs) and feedback. Although artificial transient self‐assemblies have been realized via activation/deactivation CRNs, the transient structures themselves do mostly not engage in the CRN. We introduce a rational design approach for chemo‐structural feedback, and present a transient colloidal co‐assembly system, where the formed co‐assemblies accelerate their destruction autonomously. We achieve this by immobilizing enzymes of a deactivating acid‐producing enzymatic cascade on pH‐switchable microgels that can form co‐assemblies at high pH. Since the enzyme partners are immobilized on individual microgels, the co‐assembled state brings them close enough for enhanced acid generation. The amplified deactivator production (acid) leads to an almost two‐fold reduction in the lifetime of the transiently formed pH‐state. Our study thus introduces versatile mechanisms for chemo‐structural feedback.
Collapse
Affiliation(s)
- Charu Sharma
- A3BMS Lab, Department of Chemistry, University of Mainz, 55128, Mainz, Germany
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, 55128, Mainz, Germany.,Cluster of Excellence livMats @ FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79098, Freiburg, Germany
| |
Collapse
|
7
|
Sharma C, Walther A. Self‐Regulating Colloidal Co‐Assemblies That Accelerate Their Own Destruction via Chemo‐Structural Feedback. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Charu Sharma
- A3BMS Lab Department of Chemistry University of Mainz 55128 Mainz Germany
| | - Andreas Walther
- A3BMS Lab Department of Chemistry University of Mainz 55128 Mainz Germany
- Cluster of Excellence livMats @ FIT Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg 79098 Freiburg Germany
| |
Collapse
|
8
|
Affiliation(s)
- Haoyue Lu
- Shandong University School of Chemistry and Chemical Engineering 27 Shanda Nanlu 250100 Jinan CHINA
| | - Jingcheng Hao
- Shandong University Key Laboratory of Colloid and Interface Chemistry 27 Shanda Nanlu 250100 Jinan CHINA
| | - Xu Wang
- Shandong University National Engineering Research Center for Colloidal Materials 27 Shanda Nanlu 250100 Jinan CHINA
| |
Collapse
|
9
|
Xie X, Zhang Y, Liang Y, Wang M, Cui Y, Li J, Liu C. Programmable Transient Supramolecular Chiral G‐quadruplex Hydrogels by a Chemically Fueled Non‐equilibrium Self‐Assembly Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiao‐Qiao Xie
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou 450001 China
- Henan Provincial Key Lab of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450002 China
| | - Yunfei Zhang
- Henan Provincial Key Lab of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450002 China
| | - Yujia Liang
- Henan Provincial Key Lab of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450002 China
| | - Mengke Wang
- Henan Provincial Key Lab of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450002 China
| | - Yihan Cui
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou 450001 China
- Henan Provincial Key Lab of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450002 China
| | - Jingjing Li
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou 450001 China
| | - Chun‐Sen Liu
- Henan Provincial Key Lab of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450002 China
| |
Collapse
|
10
|
Xie XQ, Zhang Y, Wang M, Liang Y, Cui Y, Li J, Liu CS. Programmable Transient Supramolecular Chiral G-quadruplex Hydrogels via a Chemically Fueled Non-Equilibrium Self-assembly Strategy. Angew Chem Int Ed Engl 2021; 61:e202114471. [PMID: 34927378 DOI: 10.1002/anie.202114471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/10/2022]
Abstract
The temporal and spatial control of natural systems has aroused great interest in the creation of synthetic mimics. Operating with boronic ester-based dynamic covalent chemistry and coupling it with an internal pH feedback system, herein, we developed a new chemically fueled reaction network to design non-equilibrium supramolecular chiral G-quadruplex hydrogels with programmable lifetime from minutes, to hours, to days, as well as high transparency and conductivity, excellent injectability and rapid self-healability. The cycle system can be controlled via in-situ kinetically-controlled formation and dissociation of dynamic boronic ester bonds between cis-diols of guanosine (G) and 5-fluorobenzoxaborole (B) under chemical fuels (KOH and 1,3-propanesultone), leading to the formation of a precipitate-solution-gel-precipitate cycle under non-equilibrium conditions. A combined experimental-computational approach revealed that the underlying mechanism of the non-equilibrium self-assembly involves aggregation and disaggregation of right-handed helical G-quadruplex superstructure. With consecutive cycles of fuel addition, the non-equilibrium system can be easily refueled at least 6 cycles without obvious loss in the rheological moduli of the transient hydrogels. The proposed dynamic boronic ester-based non-equilibrium self-assembly strategy offers a new option to design next-generation adaptive and interactive smart materials.
Collapse
Affiliation(s)
- Xiao-Qiao Xie
- Henan University of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - Yunfei Zhang
- Zhengzhou University of Light Industry, Henan Provincial Key Lab of Surface & Interface Science, CHINA
| | - Mengke Wang
- Zhengzhou University of Light Industry, Henan Provincial Key Lab of Surface & Interface Science, CHINA
| | - Yujia Liang
- Zhengzhou University of Light Industry, Henan Provincial Key Lab of Surface & Interface Science, CHINA
| | - Yihan Cui
- Henan University of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - Jingjing Li
- Henan University of Technology, Chemistry Department, Lianhua Street No. 100, 450001, Zhengzhou, CHINA
| | - Chun-Sen Liu
- Zhengzhou University of Light Industry, Henan Provincial Key Lab of Surface & Interface Science, CHINA
| |
Collapse
|
11
|
Jain M, Ravoo BJ. Fuel-Driven and Enzyme-Regulated Redox-Responsive Supramolecular Hydrogels. Angew Chem Int Ed Engl 2021; 60:21062-21068. [PMID: 34252251 PMCID: PMC8518796 DOI: 10.1002/anie.202107917] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 12/01/2022]
Abstract
Chemical reaction networks (CRN) embedded in hydrogels can transform responsive materials into complex self-regulating materials that generate feedback to counter the effect of external stimuli. This study presents hydrogels containing the β-cyclodextrin (CD) and ferrocene (Fc) host-guest pair as supramolecular crosslinks where redox-responsive behavior is driven by the enzyme-fuel couples horse radish peroxidase (HRP)-H2 O2 and glucose oxidase (GOx)-d-glucose. The hydrogel can be tuned from a responsive to a self-regulating supramolecular system by varying the concentration of added reduction fuel d-glucose. The onset of self-regulating behavior is due to formation of oxidation fuel in the hydrogel by a cofactor intermediate GOx[FADH2 ]. UV/Vis spectroscopy, rheology, and kinetic modeling were employed to understand the emergence of out-of-equilibrium behavior and reveal the programmable negative feedback response of the hydrogel, including the adaptation of its elastic modulus and its potential as a glucose sensor.
Collapse
Affiliation(s)
- Mehak Jain
- Organic Chemistry Institute and Center for Soft NanoscienceWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft NanoscienceWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| |
Collapse
|
12
|
Das K, Gabrielli L, Prins LJ. Chemically Fueled Self-Assembly in Biology and Chemistry. Angew Chem Int Ed Engl 2021; 60:20120-20143. [PMID: 33704885 PMCID: PMC8453758 DOI: 10.1002/anie.202100274] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Indexed: 12/23/2022]
Abstract
Life is a non-equilibrium state of matter maintained at the expense of energy. Nature uses predominantly chemical energy stored in thermodynamically activated, but kinetically stable, molecules. These high-energy molecules are exploited for the synthesis of other biomolecules, for the activation of biological machinery such as pumps and motors, and for the maintenance of structural order. Knowledge of how chemical energy is transferred to biochemical processes is essential for the development of artificial systems with life-like processes. Here, we discuss how chemical energy can be used to control the structural organization of organic molecules. Four different strategies have been identified according to a distinguishable physical-organic basis. For each class, one example from biology and one from chemistry are discussed in detail to illustrate the practical implementation of each concept and the distinct opportunities they offer. Specific attention is paid to the discussion of chemically fueled non-equilibrium self-assembly. We discuss the meaning of non-equilibrium self-assembly, its kinetic origin, and strategies to develop synthetic non-equilibrium systems.
Collapse
Affiliation(s)
- Krishnendu Das
- Department of Chemical Sciences|University of PadovaVia Marzolo 135131PadovaItaly
| | - Luca Gabrielli
- Department of Chemical Sciences|University of PadovaVia Marzolo 135131PadovaItaly
| | - Leonard J. Prins
- Department of Chemical Sciences|University of PadovaVia Marzolo 135131PadovaItaly
| |
Collapse
|
13
|
Jain M, Ravoo BJ. Brennstoffbetriebene und enzymregulierte redoxresponsive supramolekulare Hydrogele. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mehak Jain
- Organisch Chemisches Institut und Center for Soft Nanoscience Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| | - Bart Jan Ravoo
- Organisch Chemisches Institut und Center for Soft Nanoscience Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| |
Collapse
|
14
|
Cardona MA, Chen R, Maiti S, Fortunati I, Ferrante C, Gabrielli L, Das K, Prins LJ. Time-gated fluorescence signalling under dissipative conditions. Chem Commun (Camb) 2021; 56:13979-13982. [PMID: 33079099 DOI: 10.1039/d0cc05993e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Precise control over specific functions in the time domain is ubiquitous in biological systems. Here, we demonstrate time-gated fluorescence signalling under dissipative conditions exploiting an ATP-fueled self-assembly process. A temporal ATP-concentration gradient allows the system to pass through three states, among which only the intermediate state generates a fluorescent signal from a hydrophobic dye entrapped in the assemblies. The system can be reactivated by adding a new batch of ATP. The results indicate a strategy to rationally programme the temporal emergence of functions in complex chemical systems.
Collapse
Affiliation(s)
- Maria A Cardona
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Rui Chen
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Ilaria Fortunati
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Camilla Ferrante
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Luca Gabrielli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Krishnendu Das
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
15
|
Schwarz PS, Laha S, Janssen J, Huss T, Boekhoven J, Weber CA. Parasitic behavior in competing chemically fueled reaction cycles. Chem Sci 2021; 12:7554-7560. [PMID: 34163846 PMCID: PMC8171353 DOI: 10.1039/d1sc01106e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Non-equilibrium, fuel-driven reaction cycles serve as model systems of the intricate reaction networks of life. Rich and dynamic behavior is observed when reaction cycles regulate assembly processes, such as phase separation. However, it remains unclear how the interplay between multiple reaction cycles affects the success of emergent assemblies. To tackle this question, we created a library of molecules that compete for a common fuel that transiently activates products. Often, the competition for fuel implies that a competitor decreases the lifetime of these products. However, in cases where the transient competitor product can phase-separate, such a competitor can increase the survival time of one product. Moreover, in the presence of oscillatory fueling, the same mechanism reduces variations in the product concentration while the concentration variations of the competitor product are enhanced. Like a parasite, the product benefits from the protection of the host against deactivation and increases its robustness against fuel variations at the expense of the robustness of the host. Such a parasitic behavior in multiple fuel-driven reaction cycles represents a lifelike trait, paving the way for the bottom-up design of synthetic life.
Collapse
Affiliation(s)
- Patrick S Schwarz
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Sudarshana Laha
- Biological Physics, Max Planck Institute for the Physics of Complex Systems Nöthnitzer Straße 38 01187 Dresden Germany
- Center for Systems Biology Dresden Pfotenhauerstraße 108 01307 Dresden Germany
| | - Jacqueline Janssen
- Biological Physics, Max Planck Institute for the Physics of Complex Systems Nöthnitzer Straße 38 01187 Dresden Germany
- Center for Systems Biology Dresden Pfotenhauerstraße 108 01307 Dresden Germany
| | - Tabea Huss
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
- Institute for Advanced Study, Technical University of Munich Lichtenbergstraße 2a 85748 Garching Germany
| | - Christoph A Weber
- Biological Physics, Max Planck Institute for the Physics of Complex Systems Nöthnitzer Straße 38 01187 Dresden Germany
- Center for Systems Biology Dresden Pfotenhauerstraße 108 01307 Dresden Germany
| |
Collapse
|
16
|
Das K, Gabrielli L, Prins LJ. Chemically Fueled Self‐Assembly in Biology and Chemistry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100274] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Krishnendu Das
- Department of Chemical Sciences
- University of Padova Via Marzolo 1 35131 Padova Italy
| | - Luca Gabrielli
- Department of Chemical Sciences
- University of Padova Via Marzolo 1 35131 Padova Italy
| | - Leonard J. Prins
- Department of Chemical Sciences
- University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
17
|
Kariyawasam LS, Hossain MM, Hartley CS. The Transient Covalent Bond in Abiotic Nonequilibrium Systems. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014678] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - C. Scott Hartley
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| |
Collapse
|
18
|
Kariyawasam LS, Hossain MM, Hartley CS. The Transient Covalent Bond in Abiotic Nonequilibrium Systems. Angew Chem Int Ed Engl 2021; 60:12648-12658. [PMID: 33264456 DOI: 10.1002/anie.202014678] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 12/20/2022]
Abstract
Biochemical systems accomplish many critical functions with by operating out-of-equilibrium using the energy of chemical fuels. The formation of a transient covalent bond is a simple but very effective tool in designing analogous reaction networks. This Minireview focuses on the fuel chemistries that have been used to generate transient bonds in recent demonstrations of abiotic nonequilibrium systems (i.e., systems that do not make use of biological components). Fuel reactions are divided into two fundamental classifications depending on whether the fuel contributes structural elements to the activated state, a distinction that dictates how they can be used. Reported systems are further categorized by overall fuel reaction (e.g., hydrolysis of alkylating agents, carbodiimide hydration) and illustrate how similar chemistry can be used to effect a wide range of nonequilibrium behavior, ranging from self-assembly to the operation of molecular machines.
Collapse
Affiliation(s)
- Lasith S Kariyawasam
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH, 45056, USA
| | | | - C Scott Hartley
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
19
|
Dhiman S, Singh A, George SJ. Active Bicomponent Nanoparticle Assembly with Temporal, Microstructural, and Functional Control. Chemistry 2021; 27:705-711. [PMID: 32697396 DOI: 10.1002/chem.202003415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 12/15/2022]
Abstract
Transient supramolecular self-assembly has evolved as a tool to create temporally programmable smart materials. Yet, so far single-component self-assembly has been mostly explored. In contrast, multicomponent self-assembly provides an opportunity to create unique nanostructures exhibiting complex functional outcomes, newer and different than individual components. Even two-component can result in multiple organizations, such as self-sorted domains or co-assembled heterostructures, can occur, thus making it highly complex to predict and reversibly modulate these microstructures. In this study, we attempted to create active bicomponent nanoparticle assemblies of orthogonally pH-responsive-group-functionalized gold and cadmium selenide nanoparticles with temporal microstructural control on their composition (self-sorted or co-assembly) in order to harvest their emergent transient photocatalytic activity by coupling to temporal changes in pH. Moving towards multicomponent systems can deliver next level control in terms of structural and functional outcomes of supramolecular systems.
Collapse
Affiliation(s)
- Shikha Dhiman
- Supramolecular Chemistry Laboratory, School of Advanced Materials (SAMat) and New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Akanksha Singh
- Supramolecular Chemistry Laboratory, School of Advanced Materials (SAMat) and New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Subi J George
- Supramolecular Chemistry Laboratory, School of Advanced Materials (SAMat) and New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
20
|
Díaz-Caballero M, Navarro S, Nuez-Martínez M, Peccati F, Rodríguez-Santiago L, Sodupe M, Teixidor F, Ventura S. pH-Responsive Self-Assembly of Amyloid Fibrils for Dual Hydrolase-Oxidase Reactions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03093] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marta Díaz-Caballero
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Miquel Nuez-Martínez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Francesca Peccati
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | | | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- ICREA, Passeig Lluís Companys 23, E-08010 Barcelona, Spain
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, E-08010 Barcelona, Spain
| |
Collapse
|
21
|
van der Helm MP, Wang CL, Fan B, Macchione M, Mendes E, Eelkema R. Organocatalytic Control over a Fuel-Driven Transient-Esterification Network*. Angew Chem Int Ed Engl 2020; 59:20604-20611. [PMID: 32700406 PMCID: PMC7693295 DOI: 10.1002/anie.202008921] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Signal transduction in living systems is the conversion of information into a chemical change, and is the principal process by which cells communicate. In nature, these functions are encoded in non-equilibrium (bio)chemical reaction networks (CRNs) controlled by enzymes. However, man-made catalytically controlled networks are rare. We incorporated catalysis into an artificial fuel-driven out-of-equilibrium CRN, where the forward (ester formation) and backward (ester hydrolysis) reactions are controlled by varying the ratio of two organocatalysts: pyridine and imidazole. This catalytic regulation enables full control over ester yield and lifetime. This fuel-driven strategy was expanded to a responsive polymer system, where transient polymer conformation and aggregation are controlled through fuel and catalyst levels. Altogether, we show that organocatalysis can be used to control a man-made fuel-driven system and induce a change in a macromolecular superstructure, as in natural non-equilibrium systems.
Collapse
Affiliation(s)
- Michelle P van der Helm
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Chang-Lin Wang
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Bowen Fan
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Mariano Macchione
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Eduardo Mendes
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| |
Collapse
|
22
|
Engwerda AHJ, Southworth J, Lebedeva MA, Scanes RJH, Kukura P, Fletcher SP. Coupled Metabolic Cycles Allow Out‐of‐Equilibrium Autopoietic Vesicle Replication. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Josh Southworth
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Maria A. Lebedeva
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Robert J. H. Scanes
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Philipp Kukura
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Stephen P. Fletcher
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| |
Collapse
|
23
|
Engwerda AHJ, Southworth J, Lebedeva MA, Scanes RJH, Kukura P, Fletcher SP. Coupled Metabolic Cycles Allow Out-of-Equilibrium Autopoietic Vesicle Replication. Angew Chem Int Ed Engl 2020; 59:20361-20366. [PMID: 32706135 PMCID: PMC7692917 DOI: 10.1002/anie.202007302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Indexed: 12/11/2022]
Abstract
We report chemically fuelled out-of-equilibrium self-replicating vesicles based on surfactant formation. We studied the vesicles' autocatalytic formation using UPLC to determine monomer concentration and interferometric scattering microscopy at the nanoparticle level. Unlike related reports of chemically fuelled self-replicating micelles, our vesicular system was too stable to surfactant degradation to be maintained out of equilibrium. The introduction of a catalyst, which introduces a second catalytic cycle into the metabolic network, was used to close the first cycle. This shows how coupled catalytic cycles can create a metabolic network that allows the creation and perseverance of fuel-driven, out-of-equilibrium self-replicating vesicles.
Collapse
Affiliation(s)
| | - Josh Southworth
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordUK
| | - Maria A. Lebedeva
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordUK
| | | | - Philipp Kukura
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordUK
| | | |
Collapse
|
24
|
Chandrabhas S, Maiti S, Fortunati I, Ferrante C, Gabrielli L, Prins LJ. Nucleotide-Selective Templated Self-Assembly of Nanoreactors under Dissipative Conditions. Angew Chem Int Ed Engl 2020; 59:22223-22229. [PMID: 32833254 DOI: 10.1002/anie.202010199] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/06/2023]
Abstract
Nature adopts complex chemical networks to finely tune biochemical processes. Indeed, small biomolecules play a key role in regulating the flux of metabolic pathways. Chemistry, which was traditionally focused on reactions in simple mixtures, is dedicating increasing attention to the network reactivity of highly complex synthetic systems, able to display new kinetic phenomena. Herein, we show that the addition of monophosphate nucleosides to a mixture of amphiphiles and reagents leads to the selective templated formation of self-assembled structures, which can accelerate a reaction between two hydrophobic reactants. The correct matching between nucleotide and the amphiphile head group is fundamental for the selective formation of the assemblies and for the consequent up-regulation of the chemical reaction. Transient stability of the nanoreactors is obtained under dissipative conditions, driven by enzymatic dephosphorylation of the templating nucleotides. These results show that small molecules can play a key role in modulating network reactivity, by selectively templating self-assembled structures that are able to up-regulate chemical reaction pathways.
Collapse
Affiliation(s)
- Sushmitha Chandrabhas
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali Knowledge City, Manauli, 140306, India
| | - Ilaria Fortunati
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Camilla Ferrante
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Luca Gabrielli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
25
|
Chandrabhas S, Maiti S, Fortunati I, Ferrante C, Gabrielli L, Prins LJ. Nucleotide‐Selective Templated Self‐Assembly of Nanoreactors under Dissipative Conditions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sushmitha Chandrabhas
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Subhabrata Maiti
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| | - Ilaria Fortunati
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Camilla Ferrante
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Luca Gabrielli
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
26
|
Helm MP, Wang C, Fan B, Macchione M, Mendes E, Eelkema R. Organocatalytic Control over a Fuel‐Driven Transient‐Esterification Network**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michelle P. Helm
- Department of Chemical Engineering Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Chang‐Lin Wang
- Department of Chemical Engineering Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Bowen Fan
- Department of Chemical Engineering Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Mariano Macchione
- Department of Chemical Engineering Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Eduardo Mendes
- Department of Chemical Engineering Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Rienk Eelkema
- Department of Chemical Engineering Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
27
|
Rodon Fores J, Criado‐Gonzalez M, Chaumont A, Carvalho A, Blanck C, Schmutz M, Boulmedais F, Schaaf P, Jierry L. Autonomous Growth of a Spatially Localized Supramolecular Hydrogel with Autocatalytic Ability. Angew Chem Int Ed Engl 2020; 59:14558-14563. [DOI: 10.1002/anie.202005377] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Jennifer Rodon Fores
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Miryam Criado‐Gonzalez
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 11 rue Humann 67085 Strasbourg Cedex France
- Université de Strasbourg Faculté de Chirurgie Dentaire 8 rue Sainte Elisabeth 67000 Strasbourg France
| | - Alain Chaumont
- Université de Strasbourg Faculté de Chimie, UMR7140 1 rue Blaise Pascal 67008 Strasbourg Cedex France
| | - Alain Carvalho
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Christian Blanck
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Marc Schmutz
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Fouzia Boulmedais
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Pierre Schaaf
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 11 rue Humann 67085 Strasbourg Cedex France
- Université de Strasbourg Faculté de Chirurgie Dentaire 8 rue Sainte Elisabeth 67000 Strasbourg France
| | - Loïc Jierry
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| |
Collapse
|
28
|
Rodon Fores J, Criado‐Gonzalez M, Chaumont A, Carvalho A, Blanck C, Schmutz M, Boulmedais F, Schaaf P, Jierry L. Autonomous Growth of a Spatially Localized Supramolecular Hydrogel with Autocatalytic Ability. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jennifer Rodon Fores
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Miryam Criado‐Gonzalez
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 11 rue Humann 67085 Strasbourg Cedex France
- Université de Strasbourg Faculté de Chirurgie Dentaire 8 rue Sainte Elisabeth 67000 Strasbourg France
| | - Alain Chaumont
- Université de Strasbourg Faculté de Chimie, UMR7140 1 rue Blaise Pascal 67008 Strasbourg Cedex France
| | - Alain Carvalho
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Christian Blanck
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Marc Schmutz
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Fouzia Boulmedais
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Pierre Schaaf
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 11 rue Humann 67085 Strasbourg Cedex France
- Université de Strasbourg Faculté de Chirurgie Dentaire 8 rue Sainte Elisabeth 67000 Strasbourg France
| | - Loïc Jierry
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| |
Collapse
|
29
|
Kumar M, Sementa D, Narang V, Riedo E, Ulijn RV. Self-Assembly Propensity Dictates Lifetimes in Transient Naphthalimide-Dipeptide Nanofibers. Chemistry 2020; 26:8372-8376. [PMID: 32428282 DOI: 10.1002/chem.202001008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/05/2020] [Indexed: 01/07/2023]
Abstract
Transient self-assembly of dipeptide nanofibers with lifetimes that are predictably variable through dipeptide sequence design are presented. This was achieved using 1,8-naphthalimide (NI) amino acid methyl-esters (Phe, Tyr, Leu) that are biocatalytically coupled to amino acid-amides (Phe, Tyr, Leu, Val, Ala, Ser) to form self-assembling NI-dipeptides. However, competing hydrolysis of the dipeptides results in disassembly. It was demonstrated that the kinetic parameters like lifetimes of these nanofibers can be predictably regulated by the thermodynamic parameter, namely the self-assembly propensity of the constituent dipeptide sequence. These lifetimes could vary from minutes, to hours, to permanent gels that do not degrade. Moreover, the in-built NI fluorophore was utilized to image the transient nanostructures in solution with stimulated emission depletion (STED) based super-resolution fluorescence microscopy.
Collapse
Affiliation(s)
- Mohit Kumar
- Nanoscience Initiative at Advanced Science Research Center (ASRC), The Graduate Center, City University of New York, 85 Saint Nicholas Terrace, New York, NY, 10031, USA
| | - Deborah Sementa
- Nanoscience Initiative at Advanced Science Research Center (ASRC), The Graduate Center, City University of New York, 85 Saint Nicholas Terrace, New York, NY, 10031, USA
| | - Vishal Narang
- Nanoscience Initiative at Advanced Science Research Center (ASRC), The Graduate Center, City University of New York, 85 Saint Nicholas Terrace, New York, NY, 10031, USA
| | - Elisa Riedo
- Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Rein V Ulijn
- Nanoscience Initiative at Advanced Science Research Center (ASRC), The Graduate Center, City University of New York, 85 Saint Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
| |
Collapse
|
30
|
Hossain MM, Atkinson JL, Hartley CS. Dissipative Assembly of Macrocycles Comprising Multiple Transient Bonds. Angew Chem Int Ed Engl 2020; 59:13807-13813. [PMID: 32384209 DOI: 10.1002/anie.202001523] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/18/2020] [Indexed: 12/20/2022]
Abstract
Dissipative assembly has great potential for the creation of new adaptive chemical systems. However, while molecular assembly at equilibrium is routinely used to prepare complex architectures from polyfunctional monomers, species formed out of equilibrium have, to this point, been structurally very simple. In most examples the fuel simply effects the formation of a single short-lived covalent bond. Herein, we show that chemical fuels can assemble bifunctional components into macrocycles containing multiple transient bonds. Specifically, dicarboxylic acids give aqueous dianhydride macrocycles on treatment with a carbodiimide. The macrocycles are assembled efficiently as a consequence of both fuel-dependent and fuel-independent mechanisms; they undergo slower decomposition, building up as the fuel recycles the components, and are a favored product of the dynamic exchange of the anhydride bonds. These results create new possibilities for generating structurally sophisticated out-of-equilibrium species.
Collapse
Affiliation(s)
| | - Joshua L Atkinson
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - C Scott Hartley
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
31
|
Hossain MM, Atkinson JL, Hartley CS. Dissipative Assembly of Macrocycles Comprising Multiple Transient Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Joshua L. Atkinson
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| | - C. Scott Hartley
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| |
Collapse
|
32
|
Bal S, Ghosh C, Ghosh T, Vijayaraghavan RK, Das D. Non-Equilibrium Polymerization of Cross-β Amyloid Peptides for Temporal Control of Electronic Properties. Angew Chem Int Ed Engl 2020; 59:13506-13510. [PMID: 32348633 DOI: 10.1002/anie.202003721] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/13/2020] [Indexed: 11/09/2022]
Abstract
Hydrophobic collapse plays crucial roles in protein functions, from accessing the complex three-dimensional structures of native enzymes to the dynamic polymerization of non-equilibrium microtubules. However, hydrophobic collapse can also lead to the thermodynamically downhill aggregation of aberrant proteins, which has interestingly led to the development of a unique class of soft nanomaterials. There remain critical gaps in the understanding of the mechanisms of how hydrophobic collapse can regulate such aggregation. Demonstrated herein is a methodology for non-equilibrium amyloid polymerization through mutations of the core sequence of Aβ peptides by a thermodynamically activated moiety. An out of equilibrium state is realized because of the negative feedback from the transiently formed cross-β amyloid networks. Such non-equilibrium amyloid nanostructures were utilized to access temporal control over its electronic properties.
Collapse
Affiliation(s)
- Subhajit Bal
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Chandranath Ghosh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Tapan Ghosh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Ratheesh K Vijayaraghavan
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
33
|
Bal S, Ghosh C, Ghosh T, Vijayaraghavan RK, Das D. Non‐Equilibrium Polymerization of Cross‐β Amyloid Peptides for Temporal Control of Electronic Properties. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Subhajit Bal
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Chandranath Ghosh
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Tapan Ghosh
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Ratheesh K. Vijayaraghavan
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| |
Collapse
|
34
|
Shandilya E, Maiti S. Deconvolution of Transient Species in a Multivalent Fuel‐Driven Multistep Assembly under Dissipative Conditions. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.201900040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ekta Shandilya
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| | - Subhabrata Maiti
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| |
Collapse
|
35
|
Reja A, Afrose SP, Das D. Aldolase Cascade Facilitated by Self‐Assembled Nanotubes from Short Peptide Amphiphiles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Antara Reja
- Department of Chemical Sciences & Centre for Advanced Functional MaterialsIndian Institute of Science Education and Research (IISER) Kolkata Mohanpur, West Bengal 741246 India
| | - Syed Pavel Afrose
- Department of Chemical Sciences & Centre for Advanced Functional MaterialsIndian Institute of Science Education and Research (IISER) Kolkata Mohanpur, West Bengal 741246 India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional MaterialsIndian Institute of Science Education and Research (IISER) Kolkata Mohanpur, West Bengal 741246 India
| |
Collapse
|
36
|
|
37
|
Reja A, Afrose SP, Das D. Aldolase Cascade Facilitated by Self-Assembled Nanotubes from Short Peptide Amphiphiles. Angew Chem Int Ed Engl 2020; 59:4329-4334. [PMID: 31920004 DOI: 10.1002/anie.201914633] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Indexed: 12/25/2022]
Abstract
Early evolution benefited from a complex network of reactions involving multiple C-C bond forming and breaking events that were critical for primitive metabolism. Nature gradually chose highly evolved and complex enzymes such as lyases to efficiently facilitate C-C bond formation and cleavage with remarkable substrate selectivity. Reported here is a lipidated short peptide which accesses a homogenous nanotubular morphology to efficiently catalyze C-C bond cleavage and formation. This system shows morphology-dependent catalytic rates, suggesting the formation of a binding pocket and registered enhancements in the presence of the hydrogen-bond donor tyrosine, which is exploited by extant aldolases. These assemblies showed excellent substrate selectivity and templated the formation of a specific adduct from a pool of possible adducts. The ability to catalyze metabolically relevant cascade transformations suggests the importance of such systems in early evolution.
Collapse
Affiliation(s)
- Antara Reja
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Syed Pavel Afrose
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
38
|
Zhao L, Liu Y, Xing R, Yan X. Supramolecular Photothermal Effects: A Promising Mechanism for Efficient Thermal Conversion. Angew Chem Int Ed Engl 2019; 59:3793-3801. [DOI: 10.1002/anie.201909825] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Luyang Zhao
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences No. 1 North Second Street, Zhongguancun Beijing 100190 China
| | - Yamei Liu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences No. 1 North Second Street, Zhongguancun Beijing 100190 China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences No. 1 North Second Street, Zhongguancun Beijing 100190 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences No. 1 North Second Street, Zhongguancun Beijing 100190 China
- Center for Mesoscience Institute of Process Engineering Chinese Academy of Sciences No. 1 North Second Street, Zhongguancun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
39
|
Zhao L, Liu Y, Xing R, Yan X. Supramolecular Photothermal Effects: A Promising Mechanism for Efficient Thermal Conversion. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909825] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Luyang Zhao
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences No. 1 North Second Street, Zhongguancun Beijing 100190 China
| | - Yamei Liu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences No. 1 North Second Street, Zhongguancun Beijing 100190 China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences No. 1 North Second Street, Zhongguancun Beijing 100190 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences No. 1 North Second Street, Zhongguancun Beijing 100190 China
- Center for Mesoscience Institute of Process Engineering Chinese Academy of Sciences No. 1 North Second Street, Zhongguancun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
40
|
Afrose SP, Bal S, Chatterjee A, Das K, Das D. Designed Negative Feedback from Transiently Formed Catalytic Nanostructures. Angew Chem Int Ed Engl 2019; 58:15783-15787. [PMID: 31476101 DOI: 10.1002/anie.201910280] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Syed Pavel Afrose
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Subhajit Bal
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Ayan Chatterjee
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Krishnendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| |
Collapse
|
41
|
Afrose SP, Bal S, Chatterjee A, Das K, Das D. Designed Negative Feedback from Transiently Formed Catalytic Nanostructures. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910280] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Syed Pavel Afrose
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Subhajit Bal
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Ayan Chatterjee
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Krishnendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| |
Collapse
|