1
|
de Visser PJ, Karagrigoriou D, Nguindjel AC, Korevaar PA. Quorum Sensing in Emulsion Droplet Swarms Driven by a Surfactant Competition System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307919. [PMID: 38887869 PMCID: PMC11321703 DOI: 10.1002/advs.202307919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/23/2024] [Indexed: 06/20/2024]
Abstract
Quorum sensing enables unicellular organisms to probe their population density and perform behavior that exclusively occurs above a critical density. Quorum sensing is established in emulsion droplet swarms that float at a water surface and cluster above a critical density. The design involves competition between 1) a surface tension gradient that is generated upon release of a surfactant from the oil droplets, and thereby drives their mutual repulsion, and 2) the release of a surfactant precursor from the droplets, that forms a strong imine surfactant which suppresses the surface tension gradient and thereby causes droplet clustering upon capillary (Cheerios) attraction. The production of the imine-surfactant depends on the population density of the droplets releasing the precursor so that the clustering only occurs above a critical population density. The pH-dependence of the imine-surfactant formation is exploited to trigger quorum sensing upon a base stimulus: dynamic droplet swarms are generated that cluster and spread upon spatiotemporally varying acid and base conditions. Next, the clustering of two droplet subpopulations is coupled to a chemical reaction that generates a fluorescent signal. It is foreseen that quorum sensing enables control mechanisms in droplet-based systems that display collective responses in contexts of, e.g., sensing, optics, or dynamically controlled droplet-reactors.
Collapse
Affiliation(s)
- Pieter J. de Visser
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Dimitrios Karagrigoriou
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Anne‐Déborah C. Nguindjel
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| |
Collapse
|
2
|
Shrivastava A, Du Y, Adepu HK, Li R, Madhvacharyula AS, Swett AA, Choi JH. Motility of Synthetic Cells from Engineered Lipids. ACS Synth Biol 2023; 12:2789-2801. [PMID: 37729546 DOI: 10.1021/acssynbio.3c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Synthetic cells are artificial systems that resemble natural cells. Significant efforts have been made over the years to construct synthetic protocells that can mimic biological mechanisms and perform various complex processes. These include compartmentalization, metabolism, energy supply, communication, and gene reproduction. Cell motility is also of great importance, as nature uses elegant mechanisms for intracellular trafficking, immune response, and embryogenesis. In this review, we discuss the motility of synthetic cells made from lipid vesicles and relevant molecular mechanisms. Synthetic cell motion may be classified into surface-based or solution-based depending on whether it involves interactions with surfaces or movement in fluids. Collective migration behaviors have also been demonstrated. The swarm motion requires additional mechanisms for intercellular signaling and directional motility that enable communication and coordination among the synthetic vesicles. In addition, intracellular trafficking for molecular transport has been reconstituted in minimal cells with the help of DNA nanotechnology. These efforts demonstrate synthetic cells that can move, detect, respond, and interact. We envision that new developments in protocell motility will enhance our understanding of biological processes and be instrumental in bioengineering and therapeutic applications.
Collapse
Affiliation(s)
- Aishwary Shrivastava
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Yancheng Du
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Harshith K Adepu
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Ruixin Li
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Anirudh S Madhvacharyula
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Alexander A Swett
- School of Mechanical Engineering, Purdue University, Neil Armstrong Hall of Engineering, 701 W. Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Song S, Llopis-Lorente A, Mason AF, Abdelmohsen LKEA, van Hest JCM. Confined Motion: Motility of Active Microparticles in Cell-Sized Lipid Vesicles. J Am Chem Soc 2022; 144:13831-13838. [PMID: 35867803 PMCID: PMC9354240 DOI: 10.1021/jacs.2c05232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Active materials can transduce external energy into kinetic
energy
at the nano and micron length scales. This unique feature has sparked
much research, which ranges from achieving fundamental understanding
of their motility to the assessment of potential applications. Traditionally,
motility is studied as a function of internal features such as particle
topology, while external parameters such as energy source are assessed
mainly in bulk. However, in real-life applications, confinement plays
a crucial role in determining the type of motion active particles
can adapt. This feature has been however surprisingly underexplored
experimentally. Here, we showcase a tunable experimental platform
to gain an insight into the dynamics of active particles in environments
with restricted 3D topology. Particularly, we examined the autonomous
motion of coacervate micromotors confined in giant unilamellar vesicles
(GUVs) spanning 10–50 μm in diameter and varied parameters
including fuel and micromotor concentration. We observed anomalous
diffusion upon confinement, leading to decreased motility, which was
more pronounced in smaller compartments. The results indicate that
the theoretically predicted hydrodynamic effect dominates the motion
mechanism within this platform. Our study provides a versatile approach
to understand the behavior of active matter under controlled, compartmentalized
conditions.
Collapse
Affiliation(s)
- Shidong Song
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Antoni Llopis-Lorente
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland.,Institute of Molecular Recognition and Technological Development (IDM); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alexander F Mason
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Loai K E A Abdelmohsen
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| |
Collapse
|
4
|
Khezri B, Villa K. Hybrid photoresponsive/biocatalytic micro- and nano-swimmers. Chem Asian J 2022; 17:e202200596. [PMID: 35785519 DOI: 10.1002/asia.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/03/2022] [Indexed: 11/08/2022]
Abstract
Micro/nano biomimetic systems that convert energy from the surroundings into mechanical motion have emerged as promising tools to enhance the efficiencies of different biomedical and environmental processes. The inclusion of multiple engines into the same device has become a promising strategy to achieve dual/triple stimuli responses. Such hybrid micro/nanoswimmers combining different propulsion forces exhibit advanced motion behaviors and different physical features that are interesting not only to achieve strong propulsion capabilities in complex environments but also to modulate their movement according to the intended use. The development of hybrid systems that can be actuated by both light and biocompatible fuels is of particular interest. This minireview covers the main types of photoactive/biocatalytic micro/nanoswimmers developed so far. Their main photoresponsive and enzymatic components are discussed along with the most representative designs. The applicability of such hybrid machines for analyte sensing, antibacterial and therapeutical uses are also described. The remaining challenges and opportunities are then explored.
Collapse
Affiliation(s)
- Bahareh Khezri
- University of Chemistry and Technology Prague: Vysoka skola chemicko-technologicka v Praze, Chemistry, CZECH REPUBLIC
| | - Katherine Villa
- ICIQ: Institut Catala d'Investigacio Quimica, N/A, 16, Avinguda dels Països Catalans, 43007 Tarragona, 43007, Tarragona, SPAIN
| |
Collapse
|
5
|
Wang X, Zhang D, Bai Y, Zhang J, Wang L. Enzyme-Powered Micro/Nanomotors for Cancer Treatment. Chem Asian J 2022; 17:e202200498. [PMID: 35676200 DOI: 10.1002/asia.202200498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/08/2022] [Indexed: 12/16/2022]
Abstract
The incidence and lethal rate of cancers are rapidly rising recently, however current treatments of cancers, such as surgical resection, radiotherapy, chemotherapy and targeted therapy, usually require long treatment period and have more side effects and high recurrence rate. Enzyme-powered micro/nanomotors (EMNMs), with powerful self-propulsion, enhanced permeability and good biocompatibility, have shown great potential in crossing biological barrier and targeted drug transportation for cancer treatment; moreover, advanced approaches based on EMNMs such as photothermal therapy and starvation therapy have also been widely explored in cancer treatment. Although there are several review works discussing the progress of micro/nanomotors for biomedical applications, there is not one review paper with the focus on the cancer treatment based on EMNMs. Therefore, in this review, we try to concisely and timely summarize the recent progress of cancer treatment based on enzyme-driven micro/nanomotors, such as brain tumors, bladder cancer, breast cancer and others. Finally, the challenges and outlook of cancer therapy based on EMNMs are discussed, hoping to provide fundamental guidance for the future development.
Collapse
Affiliation(s)
- Xi Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Dang Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yu Bai
- Heilongjiang University of Chinese Medicine, Harbin, 150001, P. R. China
| | - Jian Zhang
- Functional Experiment Teaching Centre, Harbin Medical University, Harbin, 150001, P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
6
|
Soni S. Trends in lipase engineering for enhanced biocatalysis. Biotechnol Appl Biochem 2022; 69:265-272. [PMID: 33438779 DOI: 10.1002/bab.2105] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/08/2021] [Indexed: 01/19/2023]
Abstract
Lipases, also known as triacylglycerol hydrolases (E.C.No. 3.1.1.3), are considered as leading biocatalysts in the lipid modification business. With properties like ease of availability, capability to work in heterogeneous media, stability in organic solvents, property of catalyzing at the lipid-water interface and even in nonaqueous conditions, have made them a versatile choice for applications in the food, flavor, detergent, pharmaceutical, leather, textile, cosmetic, and paper industries [1]. The increasing alertness toward sustainable technologies, lesser waste generation and solvent usage and minimization of energy input has brought light toward the production and usage of recombinant/improved lipases. For example, Novozym 435, a broadly used recombinant lipase isolated from Candida antarctica, dominates the lipase industry and has even created a supplier bias in the market. This shows that there is a desperate need for novel, low-cost lipases with better properties. For this, mining of existing extremophilic genomes seems more rewarding. But considering the diversity of industrial requirements such as types of solvents used or carrier systems employed for enzyme immobilization, tailor-designed enzymes are an unrealized pressing priority. Therefore, protein engineering strategies in collaboration with the discovery of new lipases can serve as a vital tool to obtain tailor-made enzymes with specific characteristics.
Collapse
Affiliation(s)
- Surabhi Soni
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Chen C, Wang X, Wang Y, Tian L, Cao J. Construction of protocell-based artificial signal transduction pathways. Chem Commun (Camb) 2021; 57:12754-12763. [PMID: 34755716 DOI: 10.1039/d1cc03775g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The maintenance of an orderly and controllable multicellular society depends on the communication and signal regulation between various types of biological cells. How to replicate complicated signal transduction pathways in synthetic protocellular communities remains a key challenge in bottom-up synthetic biology. Herein, we review recent advances in the design and construction of interactive protocell communities, or protocell communities and biological communities, and explore the ways of designing and constructing artificial paracrine-like signaling pathways and juxtacrine-like signaling pathways. Key molecules involved in the signaling pathways that can be used to connect two or more spatially separated communities, and diverse signal outputs generated by the communication are summarized. We also propose the limitations, challenges and opportunities in this field.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| | - Xuejing Wang
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Ying Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China. .,Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Binjiang Institute of Zhejiang University, 66 Dongxin Road, Hangzhou, 310053, China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
8
|
Mena-Giraldo P, Orozco J. Polymeric Micro/Nanocarriers and Motors for Cargo Transport and Phototriggered Delivery. Polymers (Basel) 2021; 13:3920. [PMID: 34833219 PMCID: PMC8621231 DOI: 10.3390/polym13223920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Smart polymer-based micro/nanoassemblies have emerged as a promising alternative for transporting and delivering a myriad of cargo. Cargo encapsulation into (or linked to) polymeric micro/nanocarrier (PC) strategies may help to conserve cargo activity and functionality when interacting with its surroundings in its journey to the target. PCs for cargo phototriggering allow for excellent spatiotemporal control via irradiation as an external stimulus, thus regulating the delivery kinetics of cargo and potentially increasing its therapeutic effect. Micromotors based on PCs offer an accelerated cargo-medium interaction for biomedical, environmental, and many other applications. This review collects the recent achievements in PC development based on nanomicelles, nanospheres, and nanopolymersomes, among others, with enhanced properties to increase cargo protection and cargo release efficiency triggered by ultraviolet (UV) and near-infrared (NIR) irradiation, including light-stimulated polymeric micromotors for propulsion, cargo transport, biosensing, and photo-thermal therapy. We emphasize the challenges of positioning PCs as drug delivery systems, as well as the outstanding opportunities of light-stimulated polymeric micromotors for practical applications.
Collapse
Affiliation(s)
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 # 52-20, Medellin 050010, Colombia;
| |
Collapse
|
9
|
Chen H, Wang L, Wang S, Li J, Li Z, Lin Y, Wang X, Huang X. Construction of Hybrid Bi‐microcompartments with Exocytosis‐Inspired Behavior toward Fast Temperature‐Modulated Transportation of Living Organisms. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Shengliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Zhenhui Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
10
|
Chen H, Wang L, Wang S, Li J, Li Z, Lin Y, Wang X, Huang X. Construction of Hybrid Bi-microcompartments with Exocytosis-Inspired Behavior toward Fast Temperature-Modulated Transportation of Living Organisms. Angew Chem Int Ed Engl 2021; 60:20795-20802. [PMID: 33908155 DOI: 10.1002/anie.202102846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/09/2021] [Indexed: 11/10/2022]
Abstract
Inspired by the unique characteristics of living cells, the creation of life-inspired functional ensembles is a rapidly expanding research topic, enabling transformative applications in various disciplines. Herein, we report a facile method for the fabrication of phospholipid and block copolymer hybrid bi-microcompartments via spontaneous asymmetric assembly at the water/tributyrin interface, whereby the temperature-mediated dewetting of the inner microcompartments allowed for exocytosis to occur in the constructed system. The exocytosis location and commencement time could be controlled by the buoyancy of the inner microcompartment and temperature, respectively. Furthermore, the constructed bi-microcompartments showed excellent biocompatibility and a universal loading capacity toward cargoes of widely ranging sizes; thus, the proliferation and temperature-programmed transportation of living organisms was achieved. Our results highlight opportunities for the development of complex mesoscale dynamic ensembles with life-inspired behaviors and provide a novel platform for on-demand transport of various living organisms.
Collapse
Affiliation(s)
- Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shengliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhenhui Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
11
|
Zhang X, You JB, Arends GF, Qian J, Chen Y, Lohse D, Shaw JM. Propelling microdroplets generated and sustained by liquid-liquid phase separation in confined spaces. SOFT MATTER 2021; 17:5362-5374. [PMID: 33956922 DOI: 10.1039/d1sm00231g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flow transport in confined spaces is ubiquitous in technological processes, ranging from separation and purification of pharmaceutical ingredients by microporous membranes and drug delivery in biomedical treatment to chemical and biomass conversion in catalyst-packed reactors and carbon dioxide sequestration. In this work, we suggest a distinct pathway for enhanced liquid transport in a confined space via propelling microdroplets. These microdroplets can form spontaneously from localized liquid-liquid phase separation as a ternary mixture is diluted by a diffusing poor solvent. High speed images reveal how the microdroplets grow, break up and propel rapidly along the solid surface, with a maximal velocity up to ∼160 μm s-1, in response to a sharp concentration gradient resulting from phase separation. The microdroplet propulsion induces a replenishing flow between the walls of the confined space towards the location of phase separation, which in turn drives the mixture out of equilibrium and leads to a repeating cascade of events. Our findings on the complex and rich phenomena of propelling droplets suggest an effective approach to enhanced flow motion of multicomponent liquid mixtures within confined spaces for time effective separation and smart transport processes.
Collapse
Affiliation(s)
- Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada. and Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands
| | - Jae Bem You
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada. and Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands
| | - Gilmar F Arends
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada.
| | - Jiasheng Qian
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada.
| | - Yibo Chen
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands
| | - Detlef Lohse
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands and Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - John M Shaw
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada.
| |
Collapse
|
12
|
Wang L, Marciello M, Estévez‐Gay M, Soto Rodriguez PED, Luengo Morato Y, Iglesias‐Fernández J, Huang X, Osuna S, Filice M, Sánchez S. Enzyme Conformation Influences the Performance of Lipase‐powered Nanomotors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Lab Department of Chemistry in Pharmaceutical Sciences Faculty of Pharmacy Universidad Complutense de Madrid (UCM) Plaza Ramón y Cajal 28040 Madrid Spain
| | - Miquel Estévez‐Gay
- Compbiolab Group Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona Carrer Maria Aurelia Capmany 69 17003 Girona Spain
| | - Paul E. D. Soto Rodriguez
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Yurena Luengo Morato
- Nanobiotechnology for Life Sciences Lab Department of Chemistry in Pharmaceutical Sciences Faculty of Pharmacy Universidad Complutense de Madrid (UCM) Plaza Ramón y Cajal 28040 Madrid Spain
| | - Javier Iglesias‐Fernández
- Compbiolab Group Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona Carrer Maria Aurelia Capmany 69 17003 Girona Spain
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Sílvia Osuna
- Compbiolab Group Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona Carrer Maria Aurelia Capmany 69 17003 Girona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| | - Marco Filice
- Nanobiotechnology for Life Sciences Lab Department of Chemistry in Pharmaceutical Sciences Faculty of Pharmacy Universidad Complutense de Madrid (UCM) Plaza Ramón y Cajal 28040 Madrid Spain
- Microscopy and Dynamic Imaging Unit Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Calle Melchor Fernandez Almagro 3 28029 Madrid Spain
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
13
|
Wang L, Marciello M, Estévez‐Gay M, Soto Rodriguez PED, Luengo Morato Y, Iglesias‐Fernández J, Huang X, Osuna S, Filice M, Sánchez S. Enzyme Conformation Influences the Performance of Lipase‐powered Nanomotors. Angew Chem Int Ed Engl 2020; 59:21080-21087. [DOI: 10.1002/anie.202008339] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/23/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Lab Department of Chemistry in Pharmaceutical Sciences Faculty of Pharmacy Universidad Complutense de Madrid (UCM) Plaza Ramón y Cajal 28040 Madrid Spain
| | - Miquel Estévez‐Gay
- Compbiolab Group Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona Carrer Maria Aurelia Capmany 69 17003 Girona Spain
| | - Paul E. D. Soto Rodriguez
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Yurena Luengo Morato
- Nanobiotechnology for Life Sciences Lab Department of Chemistry in Pharmaceutical Sciences Faculty of Pharmacy Universidad Complutense de Madrid (UCM) Plaza Ramón y Cajal 28040 Madrid Spain
| | - Javier Iglesias‐Fernández
- Compbiolab Group Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona Carrer Maria Aurelia Capmany 69 17003 Girona Spain
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Sílvia Osuna
- Compbiolab Group Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona Carrer Maria Aurelia Capmany 69 17003 Girona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| | - Marco Filice
- Nanobiotechnology for Life Sciences Lab Department of Chemistry in Pharmaceutical Sciences Faculty of Pharmacy Universidad Complutense de Madrid (UCM) Plaza Ramón y Cajal 28040 Madrid Spain
- Microscopy and Dynamic Imaging Unit Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Calle Melchor Fernandez Almagro 3 28029 Madrid Spain
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
14
|
Li Z, Kiyama A, Zeng H, Lohse D, Zhang X. Speeding up biphasic reactions with surface nanodroplets. LAB ON A CHIP 2020; 20:2965-2974. [PMID: 32780079 DOI: 10.1039/d0lc00571a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biphasic chemical reactions compartmentalized in small droplets offer advantages, such as streamlined procedures for chemical analysis, enhanced chemical reaction efficiency and high specificity of conversion. In this work, we experimentally and theoretically investigate the rate for biphasic chemical reactions between acidic nanodroplets on a substrate surface and basic reactants in a surrounding bulk flow. The reaction rate is measured by droplet shrinkage as the product is removed from the droplets by the flow. In our experiments, we determine the dependence of the reaction rate on the flow rate and the solution concentration. The theoretical analysis predicts that the life time τ of the droplets scales with Peclet number Pe and the reactant concentration in the bulk flow cre,bulk as τ∝ Pe-3/2cre,bulk-1, in good agreement with our experimental results. Furthermore, we found that the product from the reaction on an upstream surface can postpone the droplet reaction on a downstream surface, possibly due to the adsorption of interface-active products on the droplets in the downstream. The time of the delay decreases with increasing Pe of the flow and also with increasing reactant concentration in the flow, following the scaling same as that of the reaction rate with these two parameters. Our findings provide insight for the ultimate aim to enhance droplet reactions under flow conditions.
Collapse
Affiliation(s)
- Zhengxin Li
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | | | | | | | | |
Collapse
|
15
|
Chen H, Li W, Lin Y, Wang L, Liu X, Huang X. Fusion‐Induced Structural and Functional Evolution in Binary Emulsion Communities. Angew Chem Int Ed Engl 2020; 59:16953-16960. [DOI: 10.1002/anie.202004617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/04/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Weiran Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
16
|
Chen H, Li W, Lin Y, Wang L, Liu X, Huang X. Fusion‐Induced Structural and Functional Evolution in Binary Emulsion Communities. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Weiran Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
17
|
Abstract
Compartmentalisation is recognised to be a primary step for the assembly of non-living matter towards the construction of life-like microensembles. To date, a host of hollow microcompartments with various functionalities have been widely developed. Within this respect, given that dynamic behaviour is one of the fundamental features to distinguish living ensembles from those that are non-living, the design and construction of microcompartments with various dynamic behaviours are attracting considerable interest from a wide range of research communities. Significantly, the created dynamic microcompartments could also be widely used as chassis for further bottom-up design towards building protocell models by integrating and booting up necessary biological information. Herein, strategies to install the various motility behaviours into microcompartments, including haptotaxis, chemotaxis and gravitaxis, are summarized in the anticipation of inspiring more designs towards creating various advanced active microcompartments, and contributing new techniques to the ultimate goal of constructing a basic living unit entirely from non-living components.
Collapse
Affiliation(s)
- Youping Lin
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P.R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P.R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P.R. China
| |
Collapse
|
18
|
Wang L, Wang J. Self-assembly of colloids based on microfluidics. NANOSCALE 2019; 11:16708-16722. [PMID: 31469374 DOI: 10.1039/c9nr06817a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly of colloids provides a powerful way for the construction of complex multi-scale materials. Microfluidic techniques possess great potential to precisely control the assembly of micro- and nano-scale building blocks via the rational design of various microfluidic environments. In this review, we first discuss the self-assembly of colloids without templates by using the laminar microfluidic technique. The self-assembly of colloids based on a droplet as a template was subsequently summarized and discussed via droplet microfluidic technique. Moreover, the evaporation-driven self-assembly of colloids in microfluidic channels has been discussed and analysed. Finally, the representative applications in this field have been pointed out. The aim of this review is to summarize the state-of-art on the self-assembly of colloids based on various microfluidic techniques, exhibit their representative applications, and point out the current challenges in this field, hoping to inspire and guide future work.
Collapse
Affiliation(s)
- Lei Wang
- MIIT Key laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | | |
Collapse
|
19
|
Wang L, Hortelão AC, Huang X, Sánchez S. Lipase‐Powered Mesoporous Silica Nanomotors for Triglyceride Degradation. Angew Chem Int Ed Engl 2019; 58:7992-7996. [DOI: 10.1002/anie.201900697] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/15/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Ana C. Hortelão
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
20
|
Wang L, Hortelão AC, Huang X, Sánchez S. Lipase‐Powered Mesoporous Silica Nanomotors for Triglyceride Degradation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Ana C. Hortelão
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|