1
|
Ortiz E, Spinello BJ, Cho Y, Wu J, Krische MJ. Stereo- and Site-Selective Crotylation of Alcohol Proelectrophiles via Ruthenium-Catalyzed Hydrogen Auto-Transfer Mediated by Methylallene and Butadiene. Angew Chem Int Ed Engl 2022; 61:e202212814. [PMID: 36201364 PMCID: PMC9712268 DOI: 10.1002/anie.202212814] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/06/2022]
Abstract
Iodide-bound ruthenium-JOSIPHOS complexes catalyze the redox-neutral C-C coupling of primary alcohols with methylallene (1,2-butadiene) or 1,3-butadiene to form products of anti-crotylation with good to excellent levels of diastereo- and enantioselectivity. Distinct from other methods, direct crotylation of primary alcohols in the presence of unprotected secondary alcohols is possible, enabling generation of spirastrellolide B (C9-C15) and leucascandrolide A (C9-C15) substructures in significantly fewer steps than previously possible.
Collapse
Affiliation(s)
| | | | - Yoon Cho
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712-1167 (USA)
| | - Jessica Wu
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712-1167 (USA)
| |
Collapse
|
2
|
Yamada K, Deb A, Shoba VM, Lim D, Maji B, Modell AE, Choudhary A. Rational Design of Silicon-Based Zinc Ionophores. Angew Chem Int Ed Engl 2022; 61:e202201698. [PMID: 35385189 DOI: 10.1002/anie.202201698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 01/24/2023]
Abstract
Ionophores transport ions across biological membranes and have wide-ranging applications, but a platform for their rapid development does not exist. We report a platform for developing ionophores from metal-ion chelators, which are readily available with wide-ranging affinities and specificities, and structural data that can aid rational design. Specifically, we fine-tuned the binding affinity and lipophilicity of a ZnII -chelating ligand by introducing silyl groups proximal to the ZnII -binding pocket, which generated ionophores that performed better than most of the currently known ZnII ionophores. Furthermore, these silicon-based ionophores were specific for ZnII over other metals and exhibited better antibacterial activity and less toxicity to mammalian cells than several known ZnII ionophores, including pyrithione. These studies establish rational design principles for the rapid development of potent and specific ionophores and a new class of antibacterial agents.
Collapse
Affiliation(s)
- Kei Yamada
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Arghya Deb
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Veronika M Shoba
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Donghyun Lim
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Basudeb Maji
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ashley E Modell
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
3
|
Yamada K, Deb A, Shoba VM, Lim D, Maji B, Modell AE, Choudhary A. Rational Design of Silicon‐Based Zinc Ionophores. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kei Yamada
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Arghya Deb
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Veronika M. Shoba
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| | - Donghyun Lim
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| | - Basudeb Maji
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| | - Ashley E. Modell
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| |
Collapse
|
4
|
Hao X, Li TR, Chen H, Gini A, Zhang X, Rosset S, Mazet C, Tiefenbacher K, Matile S. Bioinspired Ether Cyclizations within a π-Basic Capsule Compared to Autocatalysis on π-Acidic Surfaces and Pnictogen-Bonding Catalysts. Chemistry 2021; 27:12215-12223. [PMID: 34060672 PMCID: PMC8456975 DOI: 10.1002/chem.202101548] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/15/2022]
Abstract
While the integration of supramolecular principles in catalysis attracts increasing attention, a direct comparative assessment of the resulting systems catalysts to work out distinct characteristics is often difficult. Herein is reported how the broad responsiveness of ether cyclizations to diverse inputs promises to fill this gap. Cyclizations in the confined, π-basic and Brønsted acidic interior of supramolecular capsules, for instance, are found to excel with speed (exceeding general Brønsted acid and hydrogen-bonding catalysts by far) and selective violations of the Baldwin rules (as extreme as the so far unique pnictogen-bonding catalysts). The complementary cyclization on π-acidic aromatic surfaces remains unique with regard to autocatalysis, which is shown to be chemo- and diastereoselective with regard to product-like co-catalysts but, so far, not enantioselective.
Collapse
Affiliation(s)
- Xiaoyu Hao
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, 1 Dongsan Road Erxianqiao, Chengdu, 610059, P.R. China
| | - Tian-Ren Li
- NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| | - Hao Chen
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| | - Andrea Gini
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| | - Xiang Zhang
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Science, Northwest A&F University, Xianyang Shi, Yangling, 712100, P. R. China
| | - Stéphane Rosset
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland
| | - Konrad Tiefenbacher
- NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| |
Collapse
|
5
|
Yoo M, Krische MJ. Total Synthesis of the Spliceosome Modulator Pladienolide B via Asymmetric Alcohol‐Mediated
syn
‐ and
anti
‐Diastereoselective Carbonyl Crotylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Minjin Yoo
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Michael J. Krische
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| |
Collapse
|
6
|
Yoo M, Krische MJ. Total Synthesis of the Spliceosome Modulator Pladienolide B via Asymmetric Alcohol-Mediated syn- and anti-Diastereoselective Carbonyl Crotylation. Angew Chem Int Ed Engl 2021; 60:13923-13928. [PMID: 33794050 DOI: 10.1002/anie.202103845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/12/2022]
Abstract
The potent spliceosome modulator pladienolide B, which bears 10 stereogenic centers, is prepared in 10 steps (LLS). Asymmetric alcohol-mediated carbonyl crotylations catalyzed by ruthenium and iridium that occur with syn- and anti-diastereoselectivity, respectively, were used to form the C20-C21 and C10-C11 C-C bonds.
Collapse
Affiliation(s)
- Minjin Yoo
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| |
Collapse
|
7
|
Manzer Manhas F, Kumar J, Raheem S, Thakur P, Rizvi MA, Shah BA. Photoredox‐Mediated Synthesis of β‐Hydroxydithioacetals from Terminal Alkynes. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Farah Manzer Manhas
- Department of Chemistry Shoolini University 173212 Solan Himachal Pradesh India
| | - Jaswant Kumar
- CSIR-Indian Institute of Integrative Medicine 180001 Jammu India
| | | | - Pankaj Thakur
- Department of Chemistry Shoolini University 173212 Solan Himachal Pradesh India
- Department of Environmental Sciences Central University of Himachal Pradesh 176215 Dharmshala India
| | | | - Bhahwal Ali Shah
- CSIR-Indian Institute of Integrative Medicine 180001 Jammu India
| |
Collapse
|
8
|
Paraja M, Gini A, Sakai N, Matile S. Pnictogen‐Bonding Catalysis: An Interactive Tool to Uncover Unorthodox Mechanisms in Polyether Cascade Cyclizations. Chemistry 2020; 26:15471-15476. [DOI: 10.1002/chem.202003426] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/05/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Miguel Paraja
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Andrea Gini
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| |
Collapse
|
9
|
Paraja M, Hao X, Matile S. Polyether Natural Product Inspired Cascade Cyclizations: Autocatalysis on π-Acidic Aromatic Surfaces. Angew Chem Int Ed Engl 2020; 59:15093-15097. [PMID: 32181559 DOI: 10.1002/anie.202000681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 01/03/2023]
Abstract
Anion-π catalysis functions by stabilizing anionic transition states on aromatic π surfaces, thus providing a new approach to molecular transformation. The delocalized nature of anion-π interactions suggests that they serve best in stabilizing long-distance charge displacements. Aiming therefore for an anionic cascade reaction that is as charismatic as the steroid cyclization is for conventional cation-π biocatalysis, reported here is the anion-π-catalyzed epoxide-opening ether cyclizations of oligomers. Only on π-acidic aromatic surfaces having a positive quadrupole moment, such as hexafluorobenzene to naphthalenediimides, do these polyether cascade cyclizations proceed with exceptionally high autocatalysis (rate enhancements kauto /kcat >104 m-1 ). This distinctive characteristic adds complexity to reaction mechanisms (Goldilocks-type substrate concentration dependence, entropy-centered substrate destabilization) and opens intriguing perspectives for future developments.
Collapse
Affiliation(s)
- Miguel Paraja
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Xiaoyu Hao
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Paraja M, Hao X, Matile S. Polyether Natural Product Inspired Cascade Cyclizations: Autocatalysis on π‐Acidic Aromatic Surfaces. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Miguel Paraja
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Xiaoyu Hao
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| |
Collapse
|
11
|
Paraja M, Matile S. Primary Anion–π Catalysis of Epoxide‐Opening Ether Cyclization into Rings of Different Sizes: Access to New Reactivity. Angew Chem Int Ed Engl 2020; 59:6273-6277. [DOI: 10.1002/anie.202000579] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Miguel Paraja
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| |
Collapse
|
12
|
Primary Anion–π Catalysis of Epoxide‐Opening Ether Cyclization into Rings of Different Sizes: Access to New Reactivity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|