1
|
Liu H, Ottosen RN, Jennet KM, Svenningsen EB, Kristensen TF, Biltoft M, Jakobsen MR, Poulsen TB. Macrodiolide Diversification Reveals Broad Immunosuppressive Activity That Impairs the cGAS‐STING Pathway. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Han Liu
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
- Current address: Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Rasmus N. Ottosen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Kira M. Jennet
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Esben B. Svenningsen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Tobias F. Kristensen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Mette Biltoft
- STipe Therapeutics ApS, c/o The Kitchen Peter Sabroes Gade 7 8000 Aarhus C Denmark
| | - Martin R. Jakobsen
- STipe Therapeutics ApS, c/o The Kitchen Peter Sabroes Gade 7 8000 Aarhus C Denmark
- Department of Biomedicine Aarhus University Høegh-Guldbergs Gade 10 8000 Aarhus C Denmark
| | - Thomas B. Poulsen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
2
|
Liu H, Ottosen RN, Jennet KM, Svenningsen EB, Kristensen TF, Biltoft M, Jakobsen MR, Poulsen TB. Macrodiolide Diversification Reveals Broad Immunosuppressive Activity That Impairs the cGAS-STING Pathway. Angew Chem Int Ed Engl 2021; 60:18734-18741. [PMID: 34124819 DOI: 10.1002/anie.202105793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 02/02/2023]
Abstract
The development of new immunomodulatory agents can impact various areas of medicine. In particular, compounds with the ability to modulate innate immunological pathways hold significant unexplored potential. Herein, we report a modular synthetic approach to the macrodiolide natural product (-)-vermiculine, an agent previously shown to possess diverse biological effects, including cytotoxic and immunosuppressive activity. The synthesis allows for a high degree of flexibility in modifying the macrocyclic framework, including the formation of all possible stereoisomers. In total, 18 analogues were prepared. Two analogues with minor structural modifications showed clearly enhanced cancer cell line selectivity and reduced toxicity. Moreover, these compounds possessed broad inhibitory activity against innate immunological pathways in human PBMCs, including the DNA-sensing cGAS-STING pathway. Initial mechanistic characterization suggests a surprising impairment of the STING-TBK1 interaction.
Collapse
Affiliation(s)
- Han Liu
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark.,Current address: Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Rasmus N Ottosen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Kira M Jennet
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Esben B Svenningsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Tobias F Kristensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Mette Biltoft
- STipe Therapeutics ApS, c/o The Kitchen, Peter Sabroes Gade 7, 8000, Aarhus C, Denmark
| | - Martin R Jakobsen
- STipe Therapeutics ApS, c/o The Kitchen, Peter Sabroes Gade 7, 8000, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| |
Collapse
|
3
|
Cordon MB, Jacobsen KM, Nielsen CS, Hjerrild P, Poulsen TB. Forward Chemical Genetic Screen for Oxygen-Dependent Cytotoxins Uncovers New Covalent Fragments that Target GPX4. Chembiochem 2021; 23:e202100253. [PMID: 34252249 DOI: 10.1002/cbic.202100253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Indexed: 11/09/2022]
Abstract
The identification of growth inhibitory compounds with the ability to selectively target the cellular oxygenation state may be of therapeutic interest. Here, a phenotypic screen of a covalent fragment library revealed diverse compounds containing propiolamide warheads with selective toxicity for liver cancer cells in normoxic conditions. Target identification and validation through CETSA and direct pulldown experiments demonstrated that several compounds target glutathione peroxidase 4 (GPX4) and induce ferroptotic cell death. Although being an oxidative cell death mechanism, ferroptosis can be induced also under hypoxic conditions. Prompted by the selective toxicity discovered in the screen, we mapped the oxygen-dependence of several ferroptosis-inducing compounds across three different cell lines. These studies revealed combinations with notable reductions in sensitivity under hypoxic conditions. These observations are mechanistically interesting and may be relevant for the use of ferroptosis-inducers as anti-cancer agents.
Collapse
Affiliation(s)
- Marie B Cordon
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Kristian M Jacobsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Cecilie S Nielsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Per Hjerrild
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| |
Collapse
|
4
|
Adakkattil R, Thakur K, Rai V. Reactivity and Selectivity Principles in Native Protein Bioconjugation. CHEM REC 2021; 21:1941-1956. [PMID: 34184826 DOI: 10.1002/tcr.202100108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/10/2021] [Indexed: 12/24/2022]
Abstract
Are chemical methods capable of precisely engineering the native proteins? Is it possible to develop platforms that can empower the regulation of chemoselectivity, site-selectivity, modularity, protein-specificity, and site-specificity? This account delineates our research journey in the last ten years on the developments revolving around these questions. It will range from the realization of chemoselective and site-selective labeling of reactivity hotspots to modular linchpin directed modification (LDM®) platform and site-specific Gly-tag® technology. Also, we outline a few biotechnology tools, including Maspecter®, that accelerated the detailed analysis of the bioconjugates and rendered a powerful toolbox for homogeneous antibody-drug conjugates (ADCs).
Collapse
Affiliation(s)
- Ramesh Adakkattil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462 066, Bhopal, Madhya Pradesh, India
| | - Kalyani Thakur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462 066, Bhopal, Madhya Pradesh, India
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462 066, Bhopal, Madhya Pradesh, India
| |
Collapse
|
5
|
Sornay C, Hessmann S, Erb S, Dovgan I, Ehkirch A, Botzanowski T, Cianférani S, Wagner A, Chaubet G. Investigating Ugi/Passerini Multicomponent Reactions for the Site‐Selective Conjugation of Native Trastuzumab**. Chemistry 2020; 26:13797-13805. [DOI: 10.1002/chem.202002432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Charlotte Sornay
- Bio-Functional Chemistry (UMR 7199) LabEx Medalis University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) LabEx Medalis Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) LabEx Medalis Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Igor Dovgan
- Bio-Functional Chemistry (UMR 7199) LabEx Medalis University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| | - Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) LabEx Medalis Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) LabEx Medalis Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) LabEx Medalis Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199) LabEx Medalis University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199) LabEx Medalis University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| |
Collapse
|
7
|
Wørmer GJ, Hansen BK, Palmfeldt J, Poulsen TB. A Cyclopropene Electrophile that Targets Glutathione S‐Transferase Omega‐1 in Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Gustav J. Wørmer
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Bente K. Hansen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine—Research Unit for Molecular Medicine Aarhus University hospital Palle Juul-Jensens Boulevard 82 8200 Aarhus N Denmark
| | - Thomas B. Poulsen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
8
|
Wørmer GJ, Hansen BK, Palmfeldt J, Poulsen TB. A Cyclopropene Electrophile that Targets Glutathione S‐Transferase Omega‐1 in Cells. Angew Chem Int Ed Engl 2019; 58:11918-11922. [DOI: 10.1002/anie.201907520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Gustav J. Wørmer
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Bente K. Hansen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine—Research Unit for Molecular Medicine Aarhus University hospital Palle Juul-Jensens Boulevard 82 8200 Aarhus N Denmark
| | - Thomas B. Poulsen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|