1
|
Moghaddam M, Godeffroy L, Jasielec JJ, Kostopoulos N, Noël JM, Piquemal JY, Lemineur JF, Peljo P, Kanoufi F. Scanning Electrochemical Microscopy Meets Optical Microscopy: Probing the Local Paths of Charge Transfer Operando in Booster-Microparticles for Flow Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309607. [PMID: 38757541 DOI: 10.1002/smll.202309607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/08/2024] [Indexed: 05/18/2024]
Abstract
Understanding the oxidation/reduction dynamics of secondary microparticles formed from agglomerated nanoscale primary particles is crucial for advancing electrochemical energy storage technologies. In this study, the behavior of individual copper hexacyanoferrate (CuHCF) microparticles is explored at both global and local scales combining scanning electrochemical microscopy (SECM), for electrochemical interrogation of a single, but global-scale microparticle, and optical microscopy monitoring to obtain a higher resolution dynamic image of the local electrochemistry within the same particle. Chronoamperometric experiments unveil a multistep oxidation/reduction process with varying dynamics. On the one hand, the global SECM analysis enables quantifying the charge transfer as well as its dynamics at the single microparticle level during the oxidation/reduction cycles by a redox mediator in solution. These conditions allow mimicking the charge storage processes in these particles when they are used as solid boosters in redox flow batteries. On the other hand, optical imaging with sub-particle resolution allows the mapping of local conversion rates and state-of-charge within individual CuHCF particles. These maps reveal that regions of different material loadings exhibit varying charge storage capacities and conversion rates. The findings highlight the significance of porous nanostructures and provide valuable insights for designing more efficient energy storage materials.
Collapse
Affiliation(s)
- Mahdi Moghaddam
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turun Yliopisto, 20014, Finland
| | | | - Jerzy J Jasielec
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turun Yliopisto, 20014, Finland
- Department of Physical Chemistry and Modelling, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, Kraków, 30-059, Poland
| | | | - Jean-Marc Noël
- Université Paris Cité, CNRS, ITODYS, Paris, F-75013, France
| | | | | | - Pekka Peljo
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turun Yliopisto, 20014, Finland
| | | |
Collapse
|
2
|
Jayamaha G, Maleki M, Bentley CL, Kang M. Practical guidelines for the use of scanning electrochemical cell microscopy (SECCM). Analyst 2024; 149:2542-2555. [PMID: 38632960 DOI: 10.1039/d4an00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Scanning electrochemical cell microscopy (SECCM) has emerged as a transformative technology for electrochemical materials characterisation and the study of single entities, garnering global adoption by numerous research groups. While details on the instrumentation and operational principles of SECCM are readily available, the growing need for practical guidelines, troubleshooting strategies, and a systematic overview of applications and trends has become increasingly evident. This tutorial review addresses this gap by offering a comprehensive guide to the practical application of SECCM. The review begins with a discussion of recent developments and trends in the application of SECCM, before providing systematic approaches to (and the associated troubleshooting associated with) instrumental set up, probe fabrication, substrate preparation and the deployment of environmental (e.g., atmosphere and humidity) control. Serving as an invaluable resource, this tutorial review aims to equip researchers and practitioners entering the field with a comprehensive guide to essential considerations for conducting successful SECCM experiments.
Collapse
Affiliation(s)
- Gunani Jayamaha
- School of Chemistry, The University of Sydney, Camperdown, 2006 NSW, Australia.
| | - Mahin Maleki
- Institute for Frontier Materials, Deakin University, Burwood, VIC 3125, Australia
| | - Cameron L Bentley
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia
| | - Minkyung Kang
- School of Chemistry, The University of Sydney, Camperdown, 2006 NSW, Australia.
| |
Collapse
|
3
|
Tetteh EB, Valavanis D, Daviddi E, Xu X, Santana Santos C, Ventosa E, Martín-Yerga D, Schuhmann W, Unwin PR. Fast Li-ion Storage and Dynamics in TiO 2 Nanoparticle Clusters Probed by Smart Scanning Electrochemical Cell Microscopy. Angew Chem Int Ed Engl 2023; 62:e202214493. [PMID: 36469735 DOI: 10.1002/anie.202214493] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Anatase TiO2 is a promising material for Li-ion (Li+ ) batteries with fast charging capability. However, Li+ (de)intercalation dynamics in TiO2 remain elusive and reported diffusivities span many orders of magnitude. Here, we develop a smart protocol for scanning electrochemical cell microscopy (SECCM) with in situ optical microscopy (OM) to enable the high-throughput charge/discharge analysis of single TiO2 nanoparticle clusters. Directly probing active nanoparticles revealed that TiO2 with a size of ≈50 nm can store over 30 % of the theoretical capacity at an extremely fast charge/discharge rate of ≈100 C. This finding of fast Li+ storage in TiO2 particles strengthens its potential for fast-charging batteries. More generally, smart SECCM-OM should find wide applications for high-throughput electrochemical screening of nanostructured materials.
Collapse
Affiliation(s)
- Emmanuel Batsa Tetteh
- Department of Chemistry, University of Warwick, Coventry, CV47AL, UK.,Analytical Chemistry-, Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | | | - Enrico Daviddi
- Department of Chemistry, University of Warwick, Coventry, CV47AL, UK
| | - Xiangdong Xu
- Department of Chemistry, University of Warwick, Coventry, CV47AL, UK
| | - Carla Santana Santos
- Analytical Chemistry-, Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Edgar Ventosa
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain
| | | | - Wolfgang Schuhmann
- Analytical Chemistry-, Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry, CV47AL, UK
| |
Collapse
|
4
|
Lai Z, Li D, Cai S, Liu M, Huang F, Zhang G, Wu X, Jin Y. Small-Area Techniques for Micro- and Nanoelectrochemical Characterization: A Review. Anal Chem 2023; 95:357-373. [PMID: 36625128 DOI: 10.1021/acs.analchem.2c04551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Zhaogui Lai
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| | - Dingshi Li
- Beijing Institute of Space Launch Technology, Beijing 100076, China
| | - Shuangyu Cai
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| | - Min Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Feifei Huang
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| | - Guodong Zhang
- Beijing Institute of Space Launch Technology, Beijing 100076, China
| | - Xinyue Wu
- Beijing Institute of Space Launch Technology, Beijing 100076, China
| | - Ying Jin
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| |
Collapse
|
5
|
Hao J, Hao S, Xie M. Efficient enhancement on crystallization and electrochemical performance of LiMn 2O 4 by recalcination treatment. Heliyon 2022; 8:e12145. [PMID: 36561664 PMCID: PMC9763855 DOI: 10.1016/j.heliyon.2022.e12145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Spinel LiMn2O4 cathode material was obtained by a recalcination treatment, which exhibits excellent crystallization and electrochemical performance. A series of test and analysis results revealed that the performance enhancement of as-prepared sample is related to the crystal structure, morphology and electrochemical properties. Owing to the recalcination treatment, the spinel LiMn2O4 presents a truncated-octahedral morphology with selective growth of the (110) and (100) crystal planes, which would effectively inhibit manganese dissolution. Moreover, the optimized sample exhibits a better crystallinity and electrochemical reversibility than that of pristine sample, which can provide a faster Li ion de-intercalation/intercalation kinetics. Hence, the spinel LiMn2O4 cathode material delivers a high initial discharge capacity of 112.3 mAh·g-1 with a good capacity retention of 90.3% after 500 cycles and an excellent rate performance. This study constructed a facile and meaningful method to prepare spinel LiMn2O4 cathode material, which may facilitate the development of lithium-ion batteries.
Collapse
|
6
|
Martín-Yerga D, Milan DC, Xu X, Fernández-Vidal J, Whalley L, Cowan AJ, Hardwick LJ, Unwin PR. Dynamics of Solid-Electrolyte Interphase Formation on Silicon Electrodes Revealed by Combinatorial Electrochemical Screening. Angew Chem Int Ed Engl 2022; 61:e202207184. [PMID: 35699678 PMCID: PMC9543478 DOI: 10.1002/anie.202207184] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/29/2022]
Abstract
Revealing how formation protocols influence the properties of the solid-electrolyte interphase (SEI) on Si electrodes is key to developing the next generation of Li-ion batteries. SEI understanding is, however, limited by the low-throughput nature of conventional characterisation techniques. Herein, correlative scanning electrochemical cell microscopy (SECCM) and shell-isolated nanoparticles for enhanced Raman spectroscopy (SHINERS) are used for combinatorial screening of the SEI formation under a broad experimental space (20 sets of different conditions with several repeats). This novel approach reveals the heterogeneous nature and dynamics of the SEI electrochemical properties and chemical composition on Si electrodes, which evolve in a characteristic manner as a function of cycle number. Correlative SECCM/SHINERS has the potential to screen thousands of candidate experiments on a variety of battery materials to accelerate the optimization of SEI formation methods, a key bottleneck in battery manufacturing.
Collapse
Affiliation(s)
- Daniel Martín-Yerga
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- The Faraday Institution, Quad One, Harwell Campus, Didcot, OX11 0RA, UK
| | - David C Milan
- Stephenson Institute of Renewable Energy, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZF, UK
- The Faraday Institution, Quad One, Harwell Campus, Didcot, OX11 0RA, UK
| | - Xiangdong Xu
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Julia Fernández-Vidal
- Stephenson Institute of Renewable Energy, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZF, UK
| | - Laura Whalley
- Stephenson Institute of Renewable Energy, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZF, UK
- The Faraday Institution, Quad One, Harwell Campus, Didcot, OX11 0RA, UK
| | - Alexander J Cowan
- Stephenson Institute of Renewable Energy, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZF, UK
- The Faraday Institution, Quad One, Harwell Campus, Didcot, OX11 0RA, UK
| | - Laurence J Hardwick
- Stephenson Institute of Renewable Energy, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZF, UK
- The Faraday Institution, Quad One, Harwell Campus, Didcot, OX11 0RA, UK
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- The Faraday Institution, Quad One, Harwell Campus, Didcot, OX11 0RA, UK
| |
Collapse
|
7
|
Martín-Yerga D, C. Milan D, Xu X, Fernández-Vidal J, Whalley L, Cowan AJ, Hardwick LJ, Unwin P. Dynamics of Solid‐Electrolyte Interphase Formation on Silicon Electrodes Revealed by Combinatorial Electrochemical Screening. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Martín-Yerga
- University of Warwick Department of Chemistry Gibbet Hill Rd CV4 7AL Coventry UNITED KINGDOM
| | - David C. Milan
- University of Liverpool Stephenson Institute of Renewable Energy, Department of Chemistry L69 7ZF Liverpool UNITED KINGDOM
| | - Xiangdong Xu
- University of Warwick Department of Chemistry CV4 7AL Coventry UNITED KINGDOM
| | - Julia Fernández-Vidal
- University of Liverpool Stephenson Institute of Renewable Energy, Department of Chemistry L69 7ZF Liverpool UNITED KINGDOM
| | - Laura Whalley
- University of Liverpool Stephenson Institute of Renewable Energy, Department of Chemistry L69 7ZF Liverpool UNITED KINGDOM
| | - Alexander J. Cowan
- University of Liverpool Stephenson Institute of Renewable Energy, Department of Chemistry L69 7ZF UNITED KINGDOM
| | - Laurence J. Hardwick
- University of Liverpool Stephenson Institute of Renewable Energy, Department of Chemistry L69 7ZF Liverpool UNITED KINGDOM
| | - Patrick Unwin
- University of Warwick Chemistry University of Warwick CV4 7AL Coventry UNITED KINGDOM
| |
Collapse
|
8
|
Valavanis D, Ciocci P, Meloni GN, Morris P, Lemineur JF, McPherson IJ, Kanoufi F, Unwin PR. Hybrid scanning electrochemical cell microscopy-interference reflection microscopy (SECCM-IRM): tracking phase formation on surfaces in small volumes. Faraday Discuss 2021; 233:122-148. [PMID: 34909815 DOI: 10.1039/d1fd00063b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We describe the combination of scanning electrochemical cell microscopy (SECCM) and interference reflection microscopy (IRM) to produce a compelling technique for the study of interfacial processes and to track the SECCM meniscus status in real-time. SECCM allows reactions to be confined to well defined nm-to-μm-sized regions of a surface, and for experiments to be repeated quickly and easily at multiple locations. IRM is a highly surface-sensitive technique which reveals processes happening (very) close to a substrate with temporal and spatial resolution commensurate with typical electrochemical techniques. By using thin transparent conductive layers on glass as substrates, IRM can be coupled to SECCM, to allow real-time in situ optical monitoring of the SECCM meniscus and of processes that occur within it at the electrode/electrolyte interface. We first use the technique to assess the stability of the SECCM meniscus during voltammetry at an indium tin oxide (ITO) electrode at close to neutral pH, demonstrating that the meniscus contact area is rather stable over a large potential window and reproducible, varying by only ca. 5% over different SECCM approaches. At high cathodic potentials, subtle electrowetting is easily detected and quantified. We also look inside the meniscus to reveal surface changes at extreme cathodic potentials, assigned to the possible formation of indium nanoparticles. Finally, we examine the effect of meniscus size and driving potential on CaCO3 precipitation at the ITO electrode as a result of electrochemically-generated pH swings. We are able to track the number, spatial distribution and morphology of material with high spatiotemporal resolution and rationalise some of the observed deposition patterns with finite element method modelling of reactive-transport. Growth of solid phases on surfaces from solution is an important pathway to functional materials and SECCM-IRM provides a means for in situ or in operando visualisation and tracking of these processes with improved fidelity. We anticipate that this technique will be particularly powerful for the study of phase formation processes, especially as the high throughput nature of SECCM-IRM (where each spot is a separate experiment) will allow for the creation of large datasets, exploring a wide experimental parameter landscape.
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Peter Morris
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
9
|
Martín‐Yerga D, Kang M, Unwin PR. Scanning Electrochemical Cell Microscopy in a Glovebox: Structure‐Activity Correlations in the Early Stages of Solid‐Electrolyte Interphase Formation on Graphite. ChemElectroChem 2021. [DOI: 10.1002/celc.202101161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Daniel Martín‐Yerga
- Department of Chemistry University of Warwick Coventry CV47AL United Kingdom
- The Faraday Institution Quad One, Harwell Campus Didcot OX11 0RA United Kingdom
| | - Minkyung Kang
- Department of Chemistry University of Warwick Coventry CV47AL United Kingdom
- Institute for Frontier Materials Deakin University Burwood VIC 3125 Australia
| | - Patrick R. Unwin
- Department of Chemistry University of Warwick Coventry CV47AL United Kingdom
- The Faraday Institution Quad One, Harwell Campus Didcot OX11 0RA United Kingdom
| |
Collapse
|
10
|
Gavilán-Arriazu EM, Mercer MP, Barraco DE, Hoster HE, Leiva EPM. Voltammetric Behaviour of LMO at the Nanoscale: A Map of Reversibility and Diffusional Limitations. Chemphyschem 2021; 23:e202100700. [PMID: 34750942 DOI: 10.1002/cphc.202100700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Indexed: 12/30/2022]
Abstract
Understanding and optimizing single particle rate behaviour is normally challenging in composite commercial lithium-ion electrode materials. In this regard, recent experimental research has addressed the electrochemical Li-ion intercalation in individual nanosized particles. Here, we present a thorough theoretical analysis of the Li+ intercalation voltammetric behaviour in single nano/micro-scale LiMn2 O4 (LMO) particles, incorporating realistic interactions between inserted ions. A transparent 2-dimensional zone diagram representation of kinetic-diffusional behaviour is provided that allows rapid diagnosis of the reversibility and diffusion length of the system depending on the particle geometry. We provide an Excel file where the boundary lines of the zone diagram can be rapidly recalculated by setting input values of the rate constant, k 0 and diffusion coefficient, D . The model framework elucidates the heterogeneous behaviour of nanosized particles with similar sizes but different shapes. Hence, we present here an outlook for realistic multiscale modelling of real materials.
Collapse
Affiliation(s)
- Edgardo M Gavilán-Arriazu
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, INFIQC, Córdoba, Argentina.,Facultad de Matemática, Astronomía y Física, IFEG-CONICET, Universidad Nacional de Córdoba Córdoba, Argentina
| | - Michael P Mercer
- Department of Chemistry, Lancaster University, Lancaster, United Kingdom.,ALISTORE European Research Institute, CNRS FR 3104, Hub de l'Energie, 80039, Amiens, France
| | - Daniel E Barraco
- Facultad de Matemática, Astronomía y Física, IFEG-CONICET, Universidad Nacional de Córdoba Córdoba, Argentina
| | - Harry E Hoster
- Department of Chemistry, Lancaster University, Lancaster, United Kingdom.,ALISTORE European Research Institute, CNRS FR 3104, Hub de l'Energie, 80039, Amiens, France.,Department of Mechanical and Process Engineering, University Duisburg-Essen, Lotharstraße 1, 47057, Duisburg, Germany
| | - Ezequiel P M Leiva
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, INFIQC, Córdoba, Argentina
| |
Collapse
|
11
|
Shi Y, Feng G, Li X, Yang X, Ghanim AH, Ruchhoeft P, Jackson D, Mubeen S, Shan X. Electrochemical Impedance Imaging on Conductive Surfaces. Anal Chem 2021; 93:12320-12328. [PMID: 34460223 DOI: 10.1021/acs.analchem.1c02040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrochemical impedance spectroscopy (EIS) is a powerful tool to measure and quantify the system impedance. However, EIS only provides an average result from the entire electrode surface. Here, we demonstrated a reflection impedance microscope (RIM) that allows us to image and quantify the localized impedance on conductive surfaces. The RIM is based on the sensitive dependence between the materials' optical properties, such as permittivity, and their local surface charge densities. The localized charge density variations introduced by the impedance measurements will lead to optical reflectivity changes on electrode surfaces. Our experiments demonstrated that reflectivity modulations are linearly proportional to the surface charge density on the electrode and the measurements show good agreement with the simple free electron gas model. The localized impedance distribution was successfully extracted from the reflectivity measurements together with the Randles equivalent circuit model. In addition, RIM is used to quantify the impedance on different conductive surfaces, such as indium tin oxide, gold film, and stainless steel electrodes. A polydimethylsiloxane-patterned electrode surface was used to demonstrate the impedance imaging capability of RIM. In the end, a single-cell impedance imaging was obtained by RIM.
Collapse
Affiliation(s)
- Yaping Shi
- Department of Electrical & Computer Engineering, University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States of America
| | - Guangxia Feng
- Department of Electrical & Computer Engineering, University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States of America
| | - Xiaoliang Li
- Department of Electrical & Computer Engineering, University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States of America
| | - Xu Yang
- Department of Electrical & Computer Engineering, University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States of America
| | - Abdulsattar H Ghanim
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States of America
| | - Paul Ruchhoeft
- Department of Electrical & Computer Engineering, University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States of America
| | - David Jackson
- Department of Electrical & Computer Engineering, University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States of America
| | - Syed Mubeen
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States of America
| | - Xiaonan Shan
- Department of Electrical & Computer Engineering, University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States of America
| |
Collapse
|
12
|
Liu Y, Lu X, Peng Y, Chen Q. Electrochemical Visualization of Gas Bubbles on Superaerophobic Electrodes Using Scanning Electrochemical Cell Microscopy. Anal Chem 2021; 93:12337-12345. [PMID: 34460230 DOI: 10.1021/acs.analchem.1c02099] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrocatalytic gas evolution reactions, where gaseous molecules are electrogenerated by reduction or oxidation of a species, play a central role in many energy conversion systems. Superaerophobic electrodes, usually constructed by their surface microstructures, have demonstrated excellent performance for electrochemical gas evolution reactions due to their bubble-repellent properties. Understanding and quantification of the gas bubble behavior including nucleation and dynamics on such microstructured electrodes is an important but underexplored issue. In this study, we reported a scanning electrochemical cell microscopy (SECCM) investigation of individual gas bubble nucleation and dynamics on nanoscale electrodes. A classic Pt film and a nonconventional transition-metal dichalcogenide MoS2 film with different surface topologies were employed as model substrates for both H2 and N2 bubble electrochemical studies. Interestingly, the nanostructured catalyst surface exhibit significantly less supersaturation for gas bubble nucleation and a notable increase of bubble detachment compared to its flat counterpart. Electrochemical mapping results reveal that there is no clear correlation between bubble nucleation and hydrogen evolution reaction (HER) activity, regardless of local electrode surface microstructures. Our results also indicate that while the hydrophobicity of the nanostructured MoS2 surface promotes bubble nucleation, it has little effect on bubble dynamics. This work introduces a new method for nanobubble electrochemistry on broadly interesting catalysts and suggests that the deliberate microstructure on a catalyst surface is a promising strategy for improving electrocatalytic gas evolution both in terms of bubble nucleation and elimination.
Collapse
Affiliation(s)
- Yulong Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoxi Lu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yu Peng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
13
|
Daboss S, Rahmanian F, Stein HS, Kranz C. The potential of scanning electrochemical probe microscopy and scanning droplet cells in battery research. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Sven Daboss
- Institute of Analytical and Bioanalytical Chemistry Ulm University Ulm Germany
| | | | - Helge S. Stein
- Helmholtz Institute Ulm Ulm Germany
- Institute of Physical Chemistry Karlsruhe Institute of Technology Karlsruhe Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry Ulm University Ulm Germany
| |
Collapse
|
14
|
Cashen C, Evans RC, Nilsson ZN, Sambur JB. Local Substrate Heterogeneity Influences Electrochemical Activity of TEM Grid-Supported Battery Particles. Front Chem 2021; 9:651248. [PMID: 33816440 PMCID: PMC8017160 DOI: 10.3389/fchem.2021.651248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding how particle size and morphology influence ion insertion dynamics is critical for a wide range of electrochemical applications including energy storage and electrochromic smart windows. One strategy to reveal such structure–property relationships is to perform ex situ transmission electron microscopy (TEM) of nanoparticles that have been cycled on TEM grid electrodes. One drawback of this approach is that images of some particles are correlated with the electrochemical response of the entire TEM grid electrode. The lack of one-to-one electrochemical-to-structural information complicates interpretation of genuine structure/property relationships. Developing high-throughput ex situ single particle-level analytical techniques that effectively link electrochemical behavior with structural properties could accelerate the discovery of critical structure-property relationships. Here, using Li-ion insertion in WO3 nanorods as a model system, we demonstrate a correlated optically-detected electrochemistry and TEM technique that measures electrochemical behavior of via many particles simultaneously without having to make electrical contacts to single particles on the TEM grid. This correlated optical-TEM approach can link particle structure with electrochemical behavior at the single particle-level. Our measurements revealed significant electrochemical activity heterogeneity among particles. Single particle activity correlated with distinct local mechanical or electrical properties of the amorphous carbon film of the TEM grid, leading to active and inactive particles. The results are significant for correlated electrochemical/TEM imaging studies that aim to reveal structure-property relationships using single particle-level imaging and ensemble-level electrochemistry.
Collapse
Affiliation(s)
- Christina Cashen
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
| | - R Colby Evans
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
| | - Zach N Nilsson
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
| | - Justin B Sambur
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
15
|
Liu Y, Jin C, Liu Y, Ruiz KH, Ren H, Fan Y, White HS, Chen Q. Visualization and Quantification of Electrochemical H 2 Bubble Nucleation at Pt, Au, and MoS 2 Substrates. ACS Sens 2021; 6:355-363. [PMID: 32449344 DOI: 10.1021/acssensors.0c00913] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electrolytic gas evolution is a significant phenomenon in many electrochemical technologies from water splitting, chloralkali process to fuel cells. Although it is known that gas evolution may substantially affect the ohmic resistance and mass transfer, studies focusing on the electrochemistry of individual bubbles are critical but also challenging. Here, we report an approach using scanning electrochemical cell microscopy (SECCM) with a single channel pipet to quantitatively study individual gas bubble nucleation on different electrode substrates, including conventional polycrystalline Pt and Au films, as well as the most interesting two-dimensional semiconductor MoS2. Due to the confinement effect of the pipet, well-defined peak-shaped voltammetric features associated with single bubble nucleation and growth are consistently observed. From stochastic bubble nucleation measurement and finite element simulation, the surface H2 concentration corresponding to bubble nucleation is estimated to be ∼218, 137, and 157 mM, with critical nuclei contact angles of ∼156°, ∼161°, and ∼160° at polycrystalline Pt, Au, and MoS2 substrates, respectively. We further demonstrated the surface faceting at polycrystalline Pt is not specifically correlated with the bubble nucleation behavior.
Collapse
Affiliation(s)
- Yulong Liu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Cheng Jin
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Yuwen Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Karla Hernandez Ruiz
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hang Ren
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Yuchi Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Henry S. White
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Qianjin Chen
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
16
|
Tarnev T, Cychy S, Andronescu C, Muhler M, Schuhmann W, Chen Y. A Universal Nano-capillary Based Method of Catalyst Immobilization for Liquid-Cell Transmission Electron Microscopy. Angew Chem Int Ed Engl 2020; 59:5586-5590. [PMID: 31960548 PMCID: PMC7155139 DOI: 10.1002/anie.201916419] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Indexed: 11/09/2022]
Abstract
A universal nano-capillary based method for sample deposition on the silicon nitride membrane of liquid-cell transmission electron microscopy (LCTEM) chips is demonstrated. It is applicable to all substances which can be dispersed in a solvent and are suitable for drop casting, including catalysts, biological samples, and polymers. Most importantly, this method overcomes limitations concerning sample immobilization due to the fragility of the ultra-thin silicon nitride membrane required for electron transmission. Thus, a straightforward way is presented to widen the research area of LCTEM to encompass any sample which can be externally deposited beforehand. Using this method, Nix B nanoparticles are deposited on the μm-scale working electrode of the LCTEM chip and in situ observation of single catalyst particles during ethanol oxidation is for the first time successfully monitored by means of TEM movies.
Collapse
Affiliation(s)
- Tsvetan Tarnev
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty for Chemistry and BiochemistryRuhr University Bochum44801BochumGermany
| | - Steffen Cychy
- Industrial ChemistryFaculty of Chemistry and BiochemistryRuhr University Bochum44801BochumGermany
| | - Corina Andronescu
- Chemical Technology IIIFaculty of Chemistry and CENIDECenter for NanointegrationUniversity Duisburg EssenCarl-Benz-Strasse 19947057DuisburgGermany
| | - Martin Muhler
- Industrial ChemistryFaculty of Chemistry and BiochemistryRuhr University Bochum44801BochumGermany
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty for Chemistry and BiochemistryRuhr University Bochum44801BochumGermany
| | - Yen‐Ting Chen
- Center for Solvation Science (ZEMOS)Ruhr University Bochum44801BochumGermany
| |
Collapse
|
17
|
Tarnev T, Cychy S, Andronescu C, Muhler M, Schuhmann W, Chen Y. Eine universelle, auf Nanokapillaren basierende Methode zur Katalysatorimmobilisierung für die Flüssigzell‐Transmissionselektronenmikroskopie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tsvetan Tarnev
- Lehrstuhl für Analytische Chemie und Zentrum für Elektrochemie (CES) Fakultät für Chemie und Biochemie Ruhr-Universität Bochum 44801 Bochum Deutschland
| | - Steffen Cychy
- Technische Chemie Fakultät für Chemie und Biochemie Ruhr-Universität Bochum 44801 Bochum Deutschland
| | - Corina Andronescu
- Chemical Technology III Faculty of Chemistry and CENIDE Center for Nanointegration University Duisburg Essen Carl-Benz-Straße 199 47057 Duisburg Deutschland
| | - Martin Muhler
- Technische Chemie Fakultät für Chemie und Biochemie Ruhr-Universität Bochum 44801 Bochum Deutschland
| | - Wolfgang Schuhmann
- Lehrstuhl für Analytische Chemie und Zentrum für Elektrochemie (CES) Fakultät für Chemie und Biochemie Ruhr-Universität Bochum 44801 Bochum Deutschland
| | - Yen‐Ting Chen
- Zentrum für molekulare Spektroskopie und Simulation solvensgesteuerter Prozesse (ZEMOS) Ruhr-Universität Bochum 44801 Bochum Deutschland
| |
Collapse
|
18
|
Choi M, Siepser NP, Jeong S, Wang Y, Jagdale G, Ye X, Baker LA. Probing Single-Particle Electrocatalytic Activity at Facet-Controlled Gold Nanocrystals. NANO LETTERS 2020; 20:1233-1239. [PMID: 31917592 PMCID: PMC7727918 DOI: 10.1021/acs.nanolett.9b04640] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Electrocatalytic reduction reactions (i.e., the hydrogen evolution reaction (HER) and oxygen reduction reaction) at individual, faceted Au nanocubes (NCs) and nano-octahedra (ODs) expressing predominantly {100} and {111} crystal planes on the surface, respectively, were studied by nanoscale voltammetric mapping. Cyclic voltammograms were collected at individual nanoparticles (NPs) with scanning electrochemical cell microscopy (SECCM) and correlated with particle morphology imaged by electron microscopy. Nanoscale measurements from a statistically informative set of individual NPs revealed that Au NCs have superior HER electrocatalytic activity compared to that of Au ODs, in good agreement with macroscale cyclic voltammetry measurements. Au NCs exhibited more particle-to-particle variation in catalytic activity compared to that with Au ODs. The approach of single-particle SECCM imaging coupled with macroscale CV on well-defined NPs provides a powerful toolset for the design and activity assessment of nanoscale electrocatalysts.
Collapse
Affiliation(s)
- Myunghoon Choi
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Natasha P Siepser
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Soojin Jeong
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Yi Wang
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Gargi Jagdale
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Xingchen Ye
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Lane A Baker
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| |
Collapse
|
19
|
Martín-Yerga D, Costa-García A, Unwin PR. Correlative Voltammetric Microscopy: Structure-Activity Relationships in the Microscopic Electrochemical Behavior of Screen Printed Carbon Electrodes. ACS Sens 2019; 4:2173-2180. [PMID: 31353890 DOI: 10.1021/acssensors.9b01021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Screen-printed carbon electrodes (SPCEs) are widely used for electrochemical sensors. However, little is known about their electrochemical behavior at the microscopic level. In this work, we use voltammetric scanning electrochemical cell microscopy (SECCM), with dual-channel probes, to determine the microscopic factors governing the electrochemical response of SPCEs. SECCM cyclic voltammetry (CV) measurements are performed directly in hundreds of different locations of SPCEs, with high spatial resolution, using a submicrometer sized probe. Further, the localized electrode activity is spatially correlated to colocated surface structure information from scanning electron microscopy and micro-Raman spectroscopy. This approach is applied to two model electrochemical processes: hexaammineruthenium(III/II) ([Ru(NH3)6]3+/2+), a well-known outer-sphere redox couple, and dopamine (DA), which undergoes a more complex electron-proton coupled electro-oxidation, with complications from adsorption of both DA and side-products. The electrochemical reduction of [Ru(NH3)6]3+ proceeds fairly uniformly across the surface of SPCEs on the submicrometer scale. In contrast, DA electro-oxidation shows a strong dependence on the microstructure of the SPCE. By studying this process at different concentrations of DA, the relative contributions of (i) intrinsic electrode kinetics and (ii) adsorption of DA are elucidated in detail, as a function of local electrode character and surface structure. These studies provide major new insights on the electrochemical activity of SPCEs and further position voltammetric SECCM as a powerful technique for the electrochemical imaging of complex, heterogeneous, and topographically rough electrode surfaces.
Collapse
Affiliation(s)
- Daniel Martín-Yerga
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, Oviedo 33006, Spain
| | - Agustín Costa-García
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, Oviedo 33006, Spain
| | - Patrick R. Unwin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|