1
|
Dong S, Yu Z, Guo L, Yang Y, Tu C, Krishna R, Luo F. Neutral MOF Anion Receptor: Radical-Promoted Precise Anion Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304054. [PMID: 37469243 DOI: 10.1002/smll.202304054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/10/2023] [Indexed: 07/21/2023]
Abstract
Precise ion recognition plays a key role in the anionic decontamination in water. However, the established anionic recognition based on neutral or cationic anion receptor is still restricted by the inherent limitation, such as narrow application scope in organic solvent rather than water for neutral anion receptor and poor selectivity due to non-directional electrostatic interaction for cationic anion receptor. Herein, for the first time, a neutral metal-organic framework (MOF) anion receptor is shown, enabling precise anion recognition, for example, the presence of a variety of 1000-fold competitive anions does not affect the selective adsorption of the target anion at all. A radical-dominating anion-recognition mechanism is proposed for rationalizing the efficacy of the neutral MOF.
Collapse
Affiliation(s)
- Shuyu Dong
- School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, P. R. China
| | - Zhiwu Yu
- High Magnetic Field Laboratory Chinese Academy of Sciences Hefei, Hefei, Anhui, 230031, P. R. China
| | - Liecheng Guo
- School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, P. R. China
| | - Yuting Yang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, P. R. China
| | - Changzheng Tu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, P. R. China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Feng Luo
- School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, P. R. China
| |
Collapse
|
2
|
Xu W, Wang X, Li Y, Cui WR. Ultra-stable 3D pyridinium salt-based polymeric network nanotrap for selective 99TcO 4-/ReO 4- capture via hydrophobic and steric engineering. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131549. [PMID: 37163896 DOI: 10.1016/j.jhazmat.2023.131549] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Selective capture of radioactive 99TcO4- from highly alkaline nuclear waste is highly desirable for environmental remediation and waste disposal. However, the combined features of adsorbents with excellent chemical stability and high capture selectivity for 99TcO4- have not yet been achieved. Herein, we report an ultra-stable 3D pyridinium salt-based polymeric network (TMP-TBPM) nanotrap with remarkable radiation, acid and base stability for selective capture of ReO4- via hydrophobic engineering and steric hindrance, a non-radioactive surrogate of 99TcO4-. The batch capture experiments show that TMP-TBPM has high capture capacity (918.7 mg g-1) and fast sorption kinetics (94.3 % removal in 2 min), which can be attributed to the high density of pyridinium salt-based units on the highly accessible pore channels of 3D interconnected low-density skeleton. In addition, the introduction of abundant alkyl and tetraphenylmethane units into the 3D framework not only greatly enhanced the hydrophobicity and stability of TMP-TBPM, but also significantly improved the affinity toward 99TcO4-/ReO4-, enabling reversible and selective capture of 99TcO4-/ReO4- even under highly alkaline conditions. This study exhibits the great potential of 3D pyridinium salt-based polymeric network nanotrap for 99TcO4-/ReO4- capture from highly alkaline nuclear waste, providing a new strategy to construct high-performance cationic polymeric sorbents for radioactive wastewater treatment.
Collapse
Affiliation(s)
- Wei Xu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Xiu Wang
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Yibao Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Wei-Rong Cui
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China.
| |
Collapse
|
3
|
Cui WR, Xu W, Chen YR, Liu K, Qiu WB, Li Y, Qiu JD. Olefin-linked cationic covalent organic frameworks for efficient extraction of ReO 4-/ 99TcO 4. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130603. [PMID: 36580784 DOI: 10.1016/j.jhazmat.2022.130603] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Efficient extraction of radioactive 99TcO4- from strong acid/base solutions by porous adsorbents is extremely desirable but remains a great challenge. To overcome the challenge, here we report the first example of an olefin-linked cationic covalent organic framework (COF) named BDBI-TMT with excellent acid, base and radiation stability is synthesized by integrating robust imidazolium salt-based linkers with triazine building blocks. BDBI-TMT shows an ultra-fast adsorption kinetics (equilibrium is reached within 1 min) and an excellent ReO4- (a non-radioactive surrogate of 99TcO4-) capture capacity of 726 mg g-1, which can be attributed to the abundance of precisely tailored imidazolium salt-based units on the highly accessible pore walls of the ordered pore channels. Furthermore, the formation of the highly conjugated bulky alkyl skeleton enhances the hydrophobicity of BDBI-TMT, which significantly improves not only the affinity toward ReO4-/99TcO4- but also the chemical stability, allowing selective and reversible extraction of ReO4-/99TcO4- even under extreme conditions. This work demonstrates the great potential of olefin-linked cationic COFs for ReO4-/99TcO4- extraction, providing a new avenue to construct high-performance porous adsorbents for radionuclide remediation.
Collapse
Affiliation(s)
- Wei-Rong Cui
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China.
| | - Wei Xu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Yi-Ru Chen
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Kai Liu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Wei-Bin Qiu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Yibao Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China.
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
4
|
Volkov MA, Novikov AP, Grigoriev MS, Kuznetsov VV, Sitanskaia AV, Belova EV, Afanasiev AV, Nevolin IM, German KE. New Preparative Approach to Purer Technetium-99 Samples-Tetramethylammonium Pertechnetate: Deep Understanding and Application of Crystal Structure, Solubility, and Its Conversion to Technetium Zero Valent Matrix. Int J Mol Sci 2023; 24:ijms24032015. [PMID: 36768335 PMCID: PMC9916763 DOI: 10.3390/ijms24032015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
99Tc is one of the predominant fission products of 235U and an important component of nuclear industry wastes. The long half-life and specific activity of 99Tc (212,000 y, 0.63 GBq g-1) makes Tc a hazardous material. Two principal ways were proposed for its disposal, namely, long-term storage and transmutation. Conversion to metal-like technetium matrices is highly desirable for both cases and for the second one the reasonably high Tc purity was important too. Tetramethylammonium pertechnetate (TMAP) was proposed here as a prospective precursor for matrix manufacture. It provided with very high decontamination factors from actinides (that is imperative for transmutation) by means of recrystallisation and it was based on the precise data on TMAP solubility and thermodynamics accomplished in the temperature range of 3-68 °C. The structure of solid pertechnetates were re-estimated with precise X-ray structure solution and compared to its Re and Cl analogues and tetrabutylammonium analogue as well. Differential thermal and evolved gas analysis in a flow of Ar-5% H2 gas mixture showed that the major products of thermolysis were pure metallic technetium in solid matrix, trimethylammonium, carbon dioxide, and water in gas phase. High decontamination factors have been achieved when TMAP was used as an intermediate precursor for Tc.
Collapse
Affiliation(s)
- Mikhail A. Volkov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Bldg 4, Leninsky Prosp., Moscow 119071, Russia
- Correspondence:
| | - Anton P. Novikov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Bldg 4, Leninsky Prosp., Moscow 119071, Russia
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Mikhail S. Grigoriev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Bldg 4, Leninsky Prosp., Moscow 119071, Russia
| | - Vitaly V. Kuznetsov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Bldg 4, Leninsky Prosp., Moscow 119071, Russia
- Department of General and Inorganic Chemistry, Mendeleev University of Chemical Technology, 9 Miusskaya Square, Moscow 125047, Russia
| | - Anastasiia V. Sitanskaia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Bldg 4, Leninsky Prosp., Moscow 119071, Russia
| | - Elena V. Belova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Bldg 4, Leninsky Prosp., Moscow 119071, Russia
| | - Andrey V. Afanasiev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Bldg 4, Leninsky Prosp., Moscow 119071, Russia
| | - Iurii M. Nevolin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Bldg 4, Leninsky Prosp., Moscow 119071, Russia
| | - Konstantin E. German
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Bldg 4, Leninsky Prosp., Moscow 119071, Russia
| |
Collapse
|
5
|
Volkov MA, Novikov AP, Grigoriev MS, Nevolin YM, German KE. Thiourea as a Stabilizer of Reduced Forms of Technetium─Tc(III) and Tc(IV): Experimental and Theoretical Studies of Complexes. Inorg Chem 2023; 62:256-265. [PMID: 36525584 DOI: 10.1021/acs.inorgchem.2c03258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This paper presents synthetic methods for the preparation of Tc(III) and Tc(IV) coordination compounds with thiourea. We have shown that the main product of the synthesis is the complex [TcTu5X]X2, (Tu = (NH2)2CS, X = Cl, Br) and not [TcTu6]Cl3·4H2O, as previously thought. Tu2[TcX6]X2·3H2O is the main technetium-containing byproduct of the reaction. All reaction products, including byproducts, were characterized by X-ray diffraction analysis. We also measured the solubility for the obtained Tc(III) complexes. This research work considers the process of thermolysis of the obtained Tc(III) complexes and shows that the presence of sulfur atoms in the coordination sphere can inhibit the process of metal formation in an argon-hydrogen medium. The analysis of nonvalent interactions in Tc(III) complexes showed that the main contribution is made by van der Waals interactions of the H···H type (40.8-42.3%) and hydrogen bonds Hal···H/H···Hal and H···S/S···H, which are 41.6-44.5% in total. As the temperature decreases, the proportion of H···H contacts and H bonds decreases, and when the halogen (Cl by Br) is replaced, the proportion of H bonds increases and the proportion of van der Waals interactions decreases.
Collapse
Affiliation(s)
- Mikhail A Volkov
- Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky prospect 31, bldg 4, Moscow119071, Russia
| | - Anton P Novikov
- Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky prospect 31, bldg 4, Moscow119071, Russia
| | - Mikhail S Grigoriev
- Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky prospect 31, bldg 4, Moscow119071, Russia
| | - Yuri M Nevolin
- Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky prospect 31, bldg 4, Moscow119071, Russia
| | - Konstantin E German
- Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky prospect 31, bldg 4, Moscow119071, Russia
| |
Collapse
|
6
|
Dutta S, More YD, Fajal S, Mandal W, Dam GK, Ghosh SK. Ionic metal-organic frameworks (iMOFs): progress and prospects as ionic functional materials. Chem Commun (Camb) 2022; 58:13676-13698. [PMID: 36421063 DOI: 10.1039/d2cc05131a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Metal-organic frameworks (MOFs) have been a research hotspot for the last two decades, witnessing an extraordinary upsurge across various domains in materials chemistry. Ionic MOFs (both anionic and cationic MOFs) have emerged as next-generation ionic functional materials and are an important subclass of MOFs owing to their ability to generate strong electrostatic interactions between their charged framework and guest molecules. Furthermore, the presence of extra-framework counter-ions in their confined nanospaces can serve as additional functionality in these materials, which endows them a significant advantage in specific host-guest interactions and ion-exchange-based applications. In the present review, we summarize the progress and future prospects of iMOFs both in terms of fundamental developments and potential applications. Furthermore, the design principles of ionic MOFs and their state-of-the-art ion exchange performances are discussed in detail and the future perspectives of these promising ionic materials are proposed.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Yogeshwar D More
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Writakshi Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Gourab K Dam
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
7
|
Li L, Zhang M, Kang K, Xiao C. Twofold Interpenetrated Cationic Metal-Organic Framework with Hydrophobic Channels for Effectively Trapping Toxic Oxo-Anions. Inorg Chem 2022; 61:19933-19943. [PMID: 36455134 DOI: 10.1021/acs.inorgchem.2c03196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Sequestration of toxic oxo-anions (such as 99TcO4- and ClO4-) from wastewater has received constant attention due to the existing serious threat to public health and the sustainability of the environment. In view of the low energy of hydration of TcO4- and ClO4-, cationic metal-organic framework (MOF) materials with the hydrophobic microenvironment are preferred in the selection of sorbents. Herein, a twofold interpenetrated cationic MOF (ZJU-X15) with double-helical chains was constructed by tetrakis[4-(pyridin-4-yl)phenyl]ethene (TPPE) and Cd2+ for the elimination of 99TcO4- and ClO4-. Profiting from hydrophobic channels, ZJU-X15 could remove most of ReO4- (a surrogate for 99TcO4-) and ClO4- in less than 10 and 20 min, respectively. As the result of batch experiments, ZJU-X15 could capture 356 mg of ReO4- and 221 mg of ClO4- per 1 g of sorbent, showcase decent selectivity, and still maintain high removal efficiency for anions after four recycles. Furthermore, the process of anion-exchange was confirmed by ion chromatography, Fourier-transform infrared spectroscopy, scanning electron microscopy combined with an energy-dispersive X-ray spectrometer, and X-ray photoelectron spectroscopy, indicating that target anions successfully entered into the body of ZJU-X15 through anion exchange.
Collapse
Affiliation(s)
- Lei Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Meiyu Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Kang Kang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| |
Collapse
|
8
|
Novikov AP, Volkov MA. New O- and N-N-Bridging Complexes of Tc(V), the Role of the Nitrogen Atom Position in Aromatic Rings: Reaction Mechanism, Spectroscopy, DTA, XRD and Hirshfeld Surface Analysis. Int J Mol Sci 2022; 23:ijms232214034. [PMID: 36430512 PMCID: PMC9696901 DOI: 10.3390/ijms232214034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, O- and N-N-bridging complexes of technetium (V), previously known only for rhenium, were obtained for the first time. Tc(V) complexes with pyridazine (pyd), 1,2,4-triazole (trz), 3,5-dimethylpyrazole (dmpz) and pyrimidine (pyr) were obtained. In three complexes [{TcOCl2}2(μ-O)(μ-pyd)2], [{TcOCl2}2(μ-O)(μ-trz)2]·Htrz·Cl and [{TcO(dmpz)4}(μ-O)(TcOCl4)] two technetium atoms are linked by a Tc-O-Tc bond, and in the first two, Tc atoms are additionally linked by a Tc-N-N-Tc bond through the nitrogen atoms of the aromatic rings. We determined the role of nitrogen atom position in the aromatic ring and the presence of substituents on the formation of such complexes. For the first time, a reaction mechanism for the formation of such complexes was proposed. This article details the crystal structures of four new compounds. The work describes in detail the coordination of Tc atoms in the obtained structures and the regularities of the formation of crystal packings. The spectroscopic properties of the obtained compounds and their mother solutions were studied. The decomposition temperatures of the described complexes were determined. An assumption was made about the oligomerization of three-bridged complexes based on the results of mass spectrometry. Through the analysis of non-valent interactions in the structures, π-stacking, halogen-π and CH-π interactions were found. An analysis of the Hirshfeld surface for [{TcOCl2}2(μ-O)(μ-pyd)2], [{TcOCl2}2(μ-O)(μ-trz)2] and their rhenium analogues showed that the main contribution to the crystalline packing is made by interactions of the type Hal···H/H···Hal (45.4-48.9%), H···H (10.2-15.8%), and O···H/H···O (9.4-16.5%).
Collapse
|
9
|
Novikov AP, German KE, Safonov AV, Grigoriev MS. Cation Protonation Degree Influence on the Formation of Anion⋅⋅⋅Anion and Other Non‐Valent Interactions in Guaninium Perrhenates and Pertechnetate. ChemistrySelect 2022. [DOI: 10.1002/slct.202202814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anton P. Novikov
- Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences 31 Bldg 4, Leninsky prosp. Moscow 119071 Russian Federation
| | - Konstantin E. German
- Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences 31 Bldg 4, Leninsky prosp. Moscow 119071 Russian Federation
| | - Alexey V. Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences 31 Bldg 4, Leninsky prosp. Moscow 119071 Russian Federation
| | - Mikhail S. Grigoriev
- Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences 31 Bldg 4, Leninsky prosp. Moscow 119071 Russian Federation
| |
Collapse
|
10
|
Novel Synthesis Methods of New Imidazole-Containing Coordination Compounds Tc(IV, V, VII)-Reaction Mechanism, Xrd and Hirshfeld Surface Analysis. Int J Mol Sci 2022; 23:ijms23169461. [PMID: 36012725 PMCID: PMC9408894 DOI: 10.3390/ijms23169461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
In this work, we have proposed two new methods for the synthesis of [TcO2L4]+ (where L = imidazole (Im), methylimidazole (MeIm)) complexes using thiourea (Tu) and Sn(II) as the reducing agents. The main and by-products of the reactions were determined, and possible reaction mechanisms were proposed. We have shown that the reduction of Tc(VII) with thiourea is accompanied by the formation of the Tc(III) intermediate and further oxidation to Tc(V). The reaction conditions’ changing can lead to the formation of Tc(VII) and Tc(IV) salts. Seven new crystal structures are described in this work: Tc(V) complexes, salts with Tc(VII) and Tc(IV) anions. For the halide salts of Tu the cell parameters were determined. In all of the obtained compounds, except for [TcO2(MeIm)4]TcO4, there are π–stacking interactions between the aromatic rings. An increase in the anion size lead to weakening of the intermolecular interactions. The halogen bonds and anion-π interactions were also found in the hexahalide-containing compounds. The Hirshfeld surface analysis showed that the main contribution to the crystal packing is created by the van der Waals interactions of the H···H type (42.5–55.1%), H···C/C···H (17.7–21.3%) and hydrogen bonds, which contribute 15.7–25.3% in total.
Collapse
|
11
|
Hamouda MA, Sheta SM, Sheha RR, Kandil AT, Ali OI, El-Sheikh SM. A novel strontium-based MOF: synthesis, characterization, and promising application in removal of 152+154Eu from active waste. RSC Adv 2022; 12:13103-13110. [PMID: 35497013 PMCID: PMC9052379 DOI: 10.1039/d2ra01159j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/23/2022] [Indexed: 10/29/2022] Open
Abstract
Removal of hazardous radioactive materials such as 152+154Eu from active waste using the batch approach has attracted attention nowadays. In this work, a novel melamine-terephthalic strontium metal-organic framework (MTSr-MOF) was prepared via a hydrothermal method. The MTSr-MOF was characterized by various analytical techniques such as FT-IR, 1H/13C-NMR, mass spectroscopy, XPS, XRD, TGA, BET, FE-SEM/EDX, TEM, and UV. The obtained data revealed that MTSr-MOF exhibited brick-like building blocks that were bridged together by the linkers, and each block had a thickness of ∼120 nm. The BET surface area was 74.04 m2 g-1. MTSr-MOF was used for the removal of 152+154Eu radionuclides from active waste. Further functionalization using various modifiers, including oxalic acid, EDTA, sulfuric acid, and sodium hydroxide was carried out to improve the sorption efficiency of MTSr-MOF towards 152+154Eu radionuclides. Among them, MTSr-MOF modified with oxalic acid (MTSr-OX-MOF) demonstrated a superior removal efficiency toward 152+154Eu radionuclides when compared to MTSr-MOF or other published reports, with a removal efficiency of more than 96%. The higher sorption efficiency of the MTSr-OX-MOF indicates that it could be a promising candidate for the removal of 152+154Eu radionuclides from radioactive waste.
Collapse
Affiliation(s)
- Mohamed A Hamouda
- Chemistry Department, Faculty of Science, Helwan University Cairo 11795 Egypt
| | - Sheta M Sheta
- Inorganic Chemistry Department, National Research Centre 33 El-Behouth St., Dokki Giza 12622 Egypt +20-02-33370931 +201009697356
| | - Reda R Sheha
- Nuclear Chem. Dept., Hot Lab Center, Egyptian Atomic Energy Authority P. O. 13759 Cairo Egypt
| | - A T Kandil
- Chemistry Department, Faculty of Science, Helwan University Cairo 11795 Egypt
| | - Omnia I Ali
- Chemistry Department, Faculty of Science, Helwan University Cairo 11795 Egypt
| | - Said M El-Sheikh
- Nanomaterials and Nanotechnology Department, Central Metallurgical R & D Institute Cairo 11421 Egypt
| |
Collapse
|
12
|
Martin CR, Leith GA, Kittikhunnatham P, Park KC, Ejegbavwo OA, Mathur A, Callahan CR, Desmond SL, Keener MR, Ahmed F, Pandey S, Smith MD, Phillpot SR, Greytak AB, Shustova NB. Heterometallic Actinide-Containing Photoresponsive Metal-Organic Frameworks: Dynamic and Static Tuning of Electronic Properties. Angew Chem Int Ed Engl 2021; 60:8072-8080. [PMID: 33450129 DOI: 10.1002/anie.202016826] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/22/2022]
Abstract
Acquiring fundamental knowledge of properties of actinide-based materials is a necessary step to create new possibilities for addressing the current challenges in the nuclear energy and nuclear waste sectors. In this report, we established a photophysics-electronics correlation for actinide-containing metal-organic frameworks (An-MOFs) as a function of excitation wavelength, for the first time. A stepwise approach for dynamically modulating electronic properties was applied for the first time towards actinide-based heterometallic MOFs through integration of photochromic linkers. Optical cycling, modeling of density of states near the Fermi edge, conductivity measurements, and photoisomerization kinetics were employed to shed light on the process of tailoring optoelectronic properties of An-MOFs. Furthermore, the first photochromic MOF-based field-effect transistor, in which the field-effect response could be changed through light exposure, was constructed. As a demonstration, the change in current upon light exposure was sufficient to operate a two-LED fail-safe indicator circuit.
Collapse
Affiliation(s)
- Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Preecha Kittikhunnatham
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Otega A Ejegbavwo
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Abhijai Mathur
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Cameron R Callahan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Shelby L Desmond
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Myles R Keener
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Fiaz Ahmed
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Shubham Pandey
- Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Simon R Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Andrew B Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
13
|
Kang K, Dai X, Shen N, Xie R, Zhang X, Lei L, Wang S, Xiao C. Unveiling the Uncommon Fluorescent Recognition Mechanism towards Pertechnetate Using a Cationic Metal-Organic Framework Bearing N-Heterocyclic AIE Molecules. Chemistry 2021; 27:5632-5637. [PMID: 33506531 DOI: 10.1002/chem.202005362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/18/2021] [Indexed: 11/07/2022]
Abstract
As one of most problematic radionuclides, technetium-99, mainly in the form of anionic pertechnetate (TcO4 - ), exhibits high environmental mobility, long half-life, and radioactive hazard. Due to low charge density and high hydrophobicity for this tetrahedral anion, it is extremely difficult to recognize it in water. Seeking efficient and selective recognition method for TcO4 - is still a big challenge. Herein, a new water-stable cationic metal-organic framework (ZJU-X8) was reported, bearing tetraphenylethylene pyrimidine-based aggregation-induced emission (AIE) ligands and attainable silver sites for TcO4 - detection. ZJU-X8 underwent an obvious spectroscopic change from brilliant blue to flavovirens and exhibited splendid selectivity towards TcO4 - . This uncommon fluorescent recognition mechanism was well elucidated by batch sorption experiments and DFT calculations. It was found that only TcO4 - could enter into the body of ZJU-X8 through anion exchange whereas other competing anions were excluded outside. Subsequently, after interaction between TcO4 - and silver ions, the electron polarizations from pyrimidine rings to Ag+ cations significantly lowered the energy level of the π* orbital and thus reduced the π-π* energy gap, resulting in a red-shift in the fluorescent spectra.
Collapse
Affiliation(s)
- Kang Kang
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, P. R. China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Nannan Shen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Rongzhen Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Xingwang Zhang
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, P. R. China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, P. R. China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, P. R. China
| |
Collapse
|
14
|
Martin CR, Leith GA, Kittikhunnatham P, Park KC, Ejegbavwo OA, Mathur A, Callahan CR, Desmond SL, Keener MR, Ahmed F, Pandey S, Smith MD, Phillpot SR, Greytak AB, Shustova NB. Heterometallic Actinide‐Containing Photoresponsive Metal‐Organic Frameworks: Dynamic and Static Tuning of Electronic Properties. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Corey R. Martin
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Gabrielle A. Leith
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | | | - Kyoung Chul Park
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Otega A. Ejegbavwo
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Abhijai Mathur
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Cameron R. Callahan
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Shelby L. Desmond
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Myles R. Keener
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Fiaz Ahmed
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Shubham Pandey
- Department of Metallurgical and Materials Engineering Colorado School of Mines Golden CO 80401 USA
| | - Mark D. Smith
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Simon R. Phillpot
- Department of Materials Science and Engineering University of Florida Gainesville FL 32611 USA
| | - Andrew B. Greytak
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Natalia B. Shustova
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| |
Collapse
|
15
|
Cui WR, Zhang CR, Xu RH, Chen XR, Yan RH, Jiang W, Liang RP, Qiu JD. Low Band Gap Benzoxazole-Linked Covalent Organic Frameworks for Photo-Enhanced Targeted Uranium Recovery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006882. [PMID: 33470524 DOI: 10.1002/smll.202006882] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The inherent features of covalent organic frameworks (COFs) make them highly attractive for uranium recovery applications. A key aspect yet to be explored is how to improve the selectivity and efficiency of COFs for recovering uranium from seawater. To achieve this goal, a series of robust and hydrophilic benzoxazole-based COFs is developed (denoted as Tp-DBD, Bd-DBD, and Hb-DBD) as efficient adsorbents for photo-enhanced targeted uranium recovery. Benefiting from the hydroxyl groups and the formation of benzoxazole rings, the hydrophilic Tp-DBD shows outstanding stability and chemical reduction properties. Meanwhile, the synergistic effect of the hydroxyl groups and the benzoxazole rings in the π-conjugated frameworks significantly decrease the optical band gap, and improve the affinity and capacity to uranium recovery. In seawater, the adsorption capacity of uranium is 19.2× that of vanadium, a main interfering metal in uranium extraction.
Collapse
Affiliation(s)
- Wei-Rong Cui
- College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Cheng-Rong Zhang
- College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Rui-Han Xu
- College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiao-Rong Chen
- College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Run-Han Yan
- College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Wei Jiang
- College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Ru-Ping Liang
- College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
16
|
Bai P, Dong Z, Wang S, Wang X, Li Y, Wang Y, Ma Y, Yan W, Zou X, Yu J. A Layered Cationic Aluminum Oxyhydroxide as a Highly Efficient and Selective Trap for Heavy Metal Oxyanions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Pu Bai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Zhuoya Dong
- School of Physical Science and Technology Shanghai Tech University 100 Haike Road Pudong Shanghai 201210 P. R. China
| | - Shuang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Xiangyu Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yue Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yunzheng Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yanhang Ma
- School of Physical Science and Technology Shanghai Tech University 100 Haike Road Pudong Shanghai 201210 P. R. China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
- International Center of Future Science Jilin University Changchun 130012 P. R. China
| |
Collapse
|
17
|
Cui W, Li F, Xu R, Zhang C, Chen X, Yan R, Liang R, Qiu J. Regenerable Covalent Organic Frameworks for Photo‐enhanced Uranium Adsorption from Seawater. Angew Chem Int Ed Engl 2020; 59:17684-17690. [DOI: 10.1002/anie.202007895] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Wei‐Rong Cui
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Fang‐Fang Li
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Rui‐Han Xu
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Cheng‐Rong Zhang
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Xiao‐Rong Chen
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Run‐Han Yan
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Ru‐Ping Liang
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Jian‐Ding Qiu
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| |
Collapse
|
18
|
Cui W, Li F, Xu R, Zhang C, Chen X, Yan R, Liang R, Qiu J. Regenerable Covalent Organic Frameworks for Photo‐enhanced Uranium Adsorption from Seawater. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007895] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Wei‐Rong Cui
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Fang‐Fang Li
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Rui‐Han Xu
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Cheng‐Rong Zhang
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Xiao‐Rong Chen
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Run‐Han Yan
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Ru‐Ping Liang
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Jian‐Ding Qiu
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| |
Collapse
|
19
|
Radivojevic Jovanovic I, Gallagher CMB, Salcedo R, Lukens WW, Burton‐Pye BP, McGregor D, Francesconi LC. Strategies for the Photoreduction of Tc‐99 Pertechnetate to Low‐Valent Tc by Keggin Polyoxometalates. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ivana Radivojevic Jovanovic
- Department of Chemistry, of the City University of New York New York City College of Technology 285 Jay Street 11201 Brooklyn NY USA
| | - Colleen M. B. Gallagher
- Hunter College of the City University of New York 695 Park Avenue 10065 New York NY USA
- Ph.D. Program in Chemistry Graduate Center of the City University of New York 10016 New York NY USA
| | - Ramsey Salcedo
- Hunter College of the City University of New York 695 Park Avenue 10065 New York NY USA
- Ph.D. Program in Chemistry Graduate Center of the City University of New York 10016 New York NY USA
- Lehman College of the City University of New York 250 Bedford Park Boulevard West 10468 Bronx NY USA
| | - Wayne W. Lukens
- Chemical Sciences Division The Glenn T. Seaborg Center E.O. Lawrence Berkeley National Laboratory (LBNL) One Cyclotron Road 94720 Berkeley California USA
| | - Benjamin P. Burton‐Pye
- Ph.D. Program in Chemistry Graduate Center of the City University of New York 10016 New York NY USA
- Lehman College of the City University of New York 250 Bedford Park Boulevard West 10468 Bronx NY USA
| | - Donna McGregor
- Ph.D. Program in Chemistry Graduate Center of the City University of New York 10016 New York NY USA
- Lehman College of the City University of New York 250 Bedford Park Boulevard West 10468 Bronx NY USA
| | - Lynn C. Francesconi
- Hunter College of the City University of New York 695 Park Avenue 10065 New York NY USA
- Ph.D. Program in Chemistry Graduate Center of the City University of New York 10016 New York NY USA
| |
Collapse
|
20
|
Bai P, Dong Z, Wang S, Wang X, Li Y, Wang Y, Ma Y, Yan W, Zou X, Yu J. A Layered Cationic Aluminum Oxyhydroxide as a Highly Efficient and Selective Trap for Heavy Metal Oxyanions. Angew Chem Int Ed Engl 2020; 59:19539-19544. [DOI: 10.1002/anie.202005878] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Pu Bai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Zhuoya Dong
- School of Physical Science and Technology Shanghai Tech University 100 Haike Road Pudong Shanghai 201210 P. R. China
| | - Shuang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Xiangyu Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yue Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yunzheng Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yanhang Ma
- School of Physical Science and Technology Shanghai Tech University 100 Haike Road Pudong Shanghai 201210 P. R. China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
- International Center of Future Science Jilin University Changchun 130012 P. R. China
| |
Collapse
|
21
|
Pearce CI, Cordova EA, Garcia WL, Saslow SA, Cantrell KJ, Morad JW, Qafoku O, Matyáš J, Plymale AE, Chatterjee S, Kang J, Colon FC, Levitskaia TG, Rigali MJ, Szecsody JE, Heald SM, Balasubramanian M, Wang S, Sun DT, Queen WL, Bontchev R, Moore RC, Freedman VL. Evaluation of materials for iodine and technetium immobilization through sorption and redox-driven processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:136167. [PMID: 31955840 DOI: 10.1016/j.scitotenv.2019.136167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Radioactive iodine-129 (129I) and technetium-99 (99Tc) pose a risk to groundwater due to their long half-lives, toxicity, and high environmental mobility. Based on literature reviewed in Moore et al. (2019) and Pearce et al. (2019), natural and engineered materials, including iron oxides, low-solubility sulfides, tin-based materials, bismuth-based materials, organoclays, and metal organic frameworks, were tested for potential use as a deployed technology for the treatment of 129I and 99Tc to reduce environmental mobility. Materials were evaluated with metrics including capacity for IO3- and TcO4- uptake, selectivity and long-term immobilization potential. Batch testing was used to determine IO3- and TcO4- sorption under aerobic conditions for each material in synthetic groundwater at different solution to solid ratios. Material association with IO3- and TcO4- was spatially resolved using scanning electron microscopy and X-ray microprobe mapping. The potential for redox reactions was assessed using X-ray absorption near edge structure spectroscopy. Of the materials tested, bismuth oxy(hydroxide) and ferrihydrite performed the best for IO3-. The commercial Purolite A530E anion-exchange resin outperformed all materials in its sorption capacity for TcO4-. Tin-based materials had high capacity for TcO4-, but immobilized TcO4- via reductive precipitation. Bismuth-based materials had high capacity for TcO4-, though slightly lower than the tin-based materials, but did not immobilize TcO4- by a redox-drive process, mitigating potential negative re-oxidation effects over longer time periods under oxic conditions. Cationic metal organic frameworks and polymer networks had high Tc removal capacity, with TcO4- trapped within the framework of the sorbent material. Although organoclays did not have the highest capacity for IO3- and TcO4- removal in batch experiments, they are available commercially in large quantities, are relatively low cost and have low environmental impact, so were investigated in column experiments, demonstrating scale-up and removal of IO3- and TcO4- via sorption, and reductive immobilization with iron- and sulfur-based species.
Collapse
Affiliation(s)
- Carolyn I Pearce
- Pacific Northwest National Laboratory, Richland, WA, United States of America.
| | - Elsa A Cordova
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Whitney L Garcia
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Sarah A Saslow
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Kirk J Cantrell
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Joseph W Morad
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Odeta Qafoku
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Josef Matyáš
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Andrew E Plymale
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Sayandev Chatterjee
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Jaehyuk Kang
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | | | | | - Mark J Rigali
- Sandia National Laboratories, Albuquerque, NM, United States of America
| | - Jim E Szecsody
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Steve M Heald
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, United States of America
| | | | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Daniel T Sun
- EPFL Valais Wallis, Laboratory for Functional Inorganic Materials, 1951 Sion, Switzerland
| | - Wendy L Queen
- EPFL Valais Wallis, Laboratory for Functional Inorganic Materials, 1951 Sion, Switzerland
| | | | - Robert C Moore
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Vicky L Freedman
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| |
Collapse
|
22
|
Sharma S, Desai AV, Joarder B, Ghosh SK. A Water‐Stable Ionic MOF for the Selective Capture of Toxic Oxoanions of Se
VI
and As
V
and Crystallographic Insight into the Ion‐Exchange Mechanism. Angew Chem Int Ed Engl 2020; 59:7788-7792. [DOI: 10.1002/anie.202000670] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Shivani Sharma
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Aamod V. Desai
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Biplab Joarder
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Sujit K. Ghosh
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
- Centre for Energy Science, IISER Pune Pune 411008 India
| |
Collapse
|
23
|
Sharma S, Desai AV, Joarder B, Ghosh SK. A Water‐Stable Ionic MOF for the Selective Capture of Toxic Oxoanions of Se
VI
and As
V
and Crystallographic Insight into the Ion‐Exchange Mechanism. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000670] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Shivani Sharma
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Aamod V. Desai
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Biplab Joarder
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Sujit K. Ghosh
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pashan Pune 411008 India
- Centre for Energy Science, IISER Pune Pune 411008 India
| |
Collapse
|
24
|
Zhang H, Liu W, Li A, Zhang D, Li X, Zhai F, Chen L, Chen L, Wang Y, Wang S. Three Mechanisms in One Material: Uranium Capture by a Polyoxometalate–Organic Framework through Combined Complexation, Chemical Reduction, and Photocatalytic Reduction. Angew Chem Int Ed Engl 2019; 58:16110-16114. [DOI: 10.1002/anie.201909718] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Wei Liu
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
- School of Environment and Material Engineering Yantai University Yantai 264005 Shandong China
| | - Ao Li
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Duo Zhang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Xiaoyan Li
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Fuwan Zhai
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Lanhua Chen
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Long Chen
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Yanlong Wang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 China
| |
Collapse
|
25
|
Zhang H, Liu W, Li A, Zhang D, Li X, Zhai F, Chen L, Chen L, Wang Y, Wang S. Three Mechanisms in One Material: Uranium Capture by a Polyoxometalate–Organic Framework through Combined Complexation, Chemical Reduction, and Photocatalytic Reduction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909718] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hailong Zhang
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 China
| | - Wei Liu
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 China
- School of Environment and Material EngineeringYantai University Yantai 264005 Shandong China
| | - Ao Li
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 China
| | - Duo Zhang
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 China
| | - Xiaoyan Li
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 China
| | - Fuwan Zhai
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 China
| | - Lanhua Chen
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 China
| | - Long Chen
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 China
| | - Yanlong Wang
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 China
| |
Collapse
|
26
|
Wang Z, Li M, Peng Y, Zhang Z, Chen W, Huang X. An Ultrastable Metal Azolate Framework with Binding Pockets for Optimal Carbon Dioxide Capture. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhi‐Shuo Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University Guangdong 515063 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
| | - Mian Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University Guangdong 515063 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
| | - Yun‐Lei Peng
- College of ChemistryNankai University Tianjin 300071 China
| | - Zhenjie Zhang
- College of ChemistryNankai University Tianjin 300071 China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanKey Laboratory of Magnetic Resonance in Biological SystemsWuhan Institute of Physics and MathematicsChinese Academy of Sciences Wuhan 430071 China
| | - Xiao‐Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University Guangdong 515063 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
| |
Collapse
|
27
|
Wang ZS, Li M, Peng YL, Zhang Z, Chen W, Huang XC. An Ultrastable Metal Azolate Framework with Binding Pockets for Optimal Carbon Dioxide Capture. Angew Chem Int Ed Engl 2019; 58:16071-16076. [PMID: 31469218 DOI: 10.1002/anie.201909046] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/29/2019] [Indexed: 11/09/2022]
Abstract
In the evolution of metal-organic frameworks (MOFs) for carbon capture, a lasting challenge is to strike a balance between high uptake capacity/selectivity and low energy cost for regeneration. Meanwhile, these man-made materials have to survive from practical demands such as stability under harsh conditions and feasibility of scale-up synthesis. Reported here is a new MOF, Zn(imPim) (aka. MAF-stu-1), with an imidazole derivative ligand, featuring binding pockets that can accommodate CO2 molecules in a fit-like-a-glove manner. Such a high degree of shape complementarity allows direct observation of the loaded CO2 in the pockets, and warrants its optimal carbon capture performances exceeding the best-performing MOFs nowadays. Coupled with the record thermal (up to 680 °C) and chemical stability, as well as rapid large-scale production, both encoded in the material design, Zn(imPim) represents a most competitive candidate to tackle the immediate problems of carbon dioxide capture.
Collapse
Affiliation(s)
- Zhi-Shuo Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Mian Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Yun-Lei Peng
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiao-Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| |
Collapse
|
28
|
Sun D, Adiyala PR, Yim S, Kim D. Pore‐Surface Engineering by Decorating Metal‐Oxo Nodes with Phenylsilane to Give Versatile Super‐Hydrophobic Metal–Organic Frameworks (MOFs). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dengrong Sun
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS)Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Nam-gu Pohang-Si Gyungsangbuk-do 37673 South Korea
| | - Praveen Reddy Adiyala
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS)Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Nam-gu Pohang-Si Gyungsangbuk-do 37673 South Korea
| | - Se‐Jun Yim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS)Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Nam-gu Pohang-Si Gyungsangbuk-do 37673 South Korea
| | - Dong‐Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS)Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Nam-gu Pohang-Si Gyungsangbuk-do 37673 South Korea
| |
Collapse
|
29
|
Sun D, Adiyala PR, Yim SJ, Kim DP. Pore-Surface Engineering by Decorating Metal-Oxo Nodes with Phenylsilane to Give Versatile Super-Hydrophobic Metal-Organic Frameworks (MOFs). Angew Chem Int Ed Engl 2019; 58:7405-7409. [PMID: 30957390 DOI: 10.1002/anie.201902961] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 12/30/2022]
Abstract
Hydrophobization of metal-organic frameworks (MOFs) is important to push forward their practical use and thus has attracted increasing interest. In contrast to the previous reports, which mainly focused on the modification of organic ligands in MOFs, herein, we reported a novel strategy to decorate the metal-oxo nodes of MOFs with phenylsilane to afford super-hydrophobic NH2 -UiO-66(Zr), which shows highly improved base resistance and holds great promise in versatile applications, such as organic/water separation, self-cleaning, and liquid-marble fabrication. This work demonstrates the first attempt at metal-oxo node modification for super-hydrophobic MOFs, advancing a new concept in the design of MOFs with controlled wettability for practical applications.
Collapse
Affiliation(s)
- Dengrong Sun
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang-Si, Gyungsangbuk-do, 37673, South Korea
| | - Praveen Reddy Adiyala
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang-Si, Gyungsangbuk-do, 37673, South Korea
| | - Se-Jun Yim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang-Si, Gyungsangbuk-do, 37673, South Korea
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang-Si, Gyungsangbuk-do, 37673, South Korea
| |
Collapse
|
30
|
Pu D, Kou Y, Zhang L, Liu B, Zhu W, Zhu L, Duan T. Waste cigarette filters: activated carbon as a novel sorbent for uranium removal. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06502-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|