1
|
Lin C, Sun L, Meng X, Yuan X, Cui C, Qiao H, Chen P, Cui S, Zhai L, Mi L. Covalent Organic Frameworks with Tailored Functionalities for Modulating Surface Potentials in Triboelectric Nanogenerators. Angew Chem Int Ed Engl 2022; 61:e202211601. [DOI: 10.1002/anie.202211601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Chao Lin
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Linhai Sun
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Xutong Meng
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Xin Yuan
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Cheng‐Xing Cui
- School of Chemistry and Chemical Engineering Henan Institute of Science and Technology Xinxiang 453003 P. R. China
| | - Huijie Qiao
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Pengjing Chen
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Siwen Cui
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| |
Collapse
|
2
|
Lin C, Sun L, Meng X, Yuan X, Cui CX, Qiao H, Chen P, Cui S, Zhai L, Mi L. Covalent Organic Frameworks with Tailored Functionalities for Modulating Surface Potentials in Triboelectric Nanogenerators. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chao Lin
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Linhai Sun
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Xutong Meng
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Xin Yuan
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Cheng-Xing Cui
- Henan Institute of Technology: Henan Institute of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Huijie Qiao
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Pengjing Chen
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Siwen Cui
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Lipeng Zhai
- Zhongyuan University of Technology Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials NO.41 Zhongyuan Road 450007 Zhengzhou CHINA
| | - Liwei Mi
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| |
Collapse
|
3
|
Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations. Nat Commun 2022; 13:3386. [PMID: 35697704 PMCID: PMC9192728 DOI: 10.1038/s41467-022-31183-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Increasing the charge density of ionic membranes is believed to be beneficial for generating high output osmotic energy. Herein, we systematically investigated how the membrane charge populations affect permselectivity by decoupling their effects from the impact of the pore structure using a multivariate strategy for constructing covalent-organic-framework membranes. The thermo-osmotic energy conversion efficiency is improved by increasing the membrane charge density, affording 210 W m−2 with a temperature gradient of 40 K. However, this enhancement occurs only within a narrow window, and subsequently, the efficiency plateaued beyond a threshold density (0.04 C m−2). The complex interplay between pore-pore interactions in response to charge variations for ion transport across the upscaled nanoporous membranes helps explain the obtained results. This study has far-reaching implications for the rational design of ionic membranes to augment energy extraction rather than intuitively focusing on achieving high densities. The development of ionic membranes with a high charge population is critical for realizing efficient thermo-osmotic energy conversion. Here, the authors demonstrated that the thermo-osmotic energy conversion efficiency can be improved by increasing the membrane charge density but this enhancement only occurs within a narrow window.
Collapse
|
4
|
Chakraborty D, Mullangi D, Chandran C, Vaidhyanathan R. Nanopores of a Covalent Organic Framework: A Customizable Vessel for Organocatalysis. ACS OMEGA 2022; 7:15275-15295. [PMID: 35571831 PMCID: PMC9096826 DOI: 10.1021/acsomega.2c00235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/05/2022] [Indexed: 05/14/2023]
Abstract
Covalent organic frameworks (COFs) as crystalline polymers possess ordered nanochannels. When their channels are adorned with catalytically active functional groups, their highly insoluble and fluffy powder texture makes them apt heterogeneous catalysts that can be dispersed in a range of solvents and heated to high temperatures (80-180 °C). This would mean very high catalyst density, facile active-site access, and easy separation leading to high isolated yields. Different approaches have been devised to anchor or disperse the catalytic sites into the nanospaces offered by the COF pores. Such engineered COFs have been investigated as catalysts for many organic transformation reactions. These range from Suzuki-Miyaura coupling, Heck coupling, Knoevenagel condensation, Michael addition, alkene epoxidation, CO2 utilization, and more complex biomimetic catalysis. Such catalysts employ COF as a "passive" support that merely docks catalytically active inorganic clusters, or in other cases, the COF itself participates as an "active" support by altering the electronics of the inorganic catalytic sites through the redox activity of its framework. Even more, catalytic organic pockets or metal complexes have been directly tethered to COF walls to make them behave like single-site organocatalysts. Here, we have listed most COF-based organic transformations by categorizing them as metal-free non-noble-metal@COF and noble-metal@COF. The initial part of this review highlights the advantages of COFs as a component of a heterogeneous catalyst, while the latter part discusses all of the current literature on this topic.
Collapse
Affiliation(s)
- Debanjan Chakraborty
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune 411008, India
- Centre
for Energy Science, Indian Institute of
Science Education and Research, Pune 411008, India
| | - Dinesh Mullangi
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune 411008, India
| | - Chandana Chandran
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune 411008, India
| | - Ramanathan Vaidhyanathan
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune 411008, India
- Centre
for Energy Science, Indian Institute of
Science Education and Research, Pune 411008, India
| |
Collapse
|
5
|
Reduction Mechanism of NO Gas on Iron–Phthalocyanines (Fe–PCs): A DFT Investigation. Catal Letters 2022. [DOI: 10.1007/s10562-021-03751-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Zuo X, Zhu C, Xian W, Meng QW, Guo Q, Zhu X, Wang S, Wang Y, Ma S, Sun Q. Thermo-Osmotic Energy Conversion Enabled by Covalent-Organic-Framework Membranes with Record Output Power Density. Angew Chem Int Ed Engl 2022; 61:e202116910. [PMID: 35179288 DOI: 10.1002/anie.202116910] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Indexed: 01/15/2023]
Abstract
A vast amount of energy can be extracted from the untapped low-grade heat from sources below 100 °C and the Gibbs free energy from salinity gradients. Therefore, a process for simultaneous and direct conversion of these energies into electricity using permselective membranes was developed in this study. These membranes screen charges of ion flux driven by the combined salinity and temperature gradients to achieve thermo-osmotic energy conversion. Increasing the charge density in the pore channels enhanced the permselectivity and ion conductance, leading to a larger osmotic voltage and current. A 14-fold increase in power density was achieved by adjusting the ionic site population of covalent organic framework (COF) membranes. The optimal COF membrane was operated under simulated estuary conditions at a temperature difference of 60 K, which yielded a power density of ≈231 W m-2 , placing it among the best performing upscaled membranes. The developed system can pave the way to the utilization of the enormous supply of untapped osmotic power and low-grade heat energy, indicating the tremendous potential of using COF membranes for energy conversion applications.
Collapse
Affiliation(s)
- Xiuhui Zuo
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changjia Zhu
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing Guo
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xincheng Zhu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yeqing Wang
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
7
|
Huang Y, Hao X, Ma S, Wang R, Wang Y. Covalent organic framework-based porous materials for harmful gas purification. CHEMOSPHERE 2022; 291:132795. [PMID: 34748797 DOI: 10.1016/j.chemosphere.2021.132795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks (COFs) with 2D or 3D networks are a class of novel porous crystalline materials, and have attracted more and more attention in the field of gas purification owing to their attractive physicochemical properties, such as high surface area, adjustable functionality and structure, low density, and high stability. However, few systematic reviews about the application statuses of COFs in gas purification are available, especially about non-CO2 harmful gases. In this review, the recent progress of COFs about the capture, catalysis, and detection of common harmful gases (such as CO2, NOx, SO2, H2S, NH3 and volatile pollutants) were comprehensively discussed. The design strategies of COF functional materials from porosity adjustment to surface functionalization (including bottom-up approach, post-synthetic approach, and blending with other materials) for certain application were summarized in detail. Furthermore, the faced challenges and future research directions of COFs in the harmful gas treatment were clearly proposed to inspire the development of COFs.
Collapse
Affiliation(s)
- Yan Huang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Xiaoqian Hao
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Yazhou Wang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| |
Collapse
|
8
|
Sun Q, Zuo X, Zhu C, Xian W, Meng QW, Guo Q, Zhu X, Wang S, Wang Y, Ma S. Thermo‐Osmotic Energy Conversion Enabled by Covalent‐Organic‐Framework Membranes with Record Output Power Density. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qi Sun
- Zhejiang University College of Chemical and Biological Engineering 310007 Hangzhou CHINA
| | - Xiuhui Zuo
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Changjia Zhu
- University of North Texas Department of Chemistry 1508 W Mulberry St DentonDenton 76203-1277 Denton UNITED STATES
| | - Weipeng Xian
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Qing-Wei Meng
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Qing Guo
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Xincheng Zhu
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Sai Wang
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Yeqing Wang
- Zhejiang University Department of Chemistry CHINA
| | - Shengqian Ma
- University of North Texas Department of Chemistry UNITED STATES
| |
Collapse
|
9
|
Jin E, Fu S, Hanayama H, Addicoat MA, Wei W, Chen Q, Graf R, Landfester K, Bonn M, Zhang KAI, Wang HI, Müllen K, Narita A. A Nanographene‐Based Two‐Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Enquan Jin
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Shuai Fu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University Kunigami-gun, Okinawa 904-0495 Japan
| | - Matthew A. Addicoat
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS UK
| | - Wenxin Wei
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Qiang Chen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Robert Graf
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | | - Mischa Bonn
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Kai A. I. Zhang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Department of Materials Science Fudan University Shanghai 200433 P.R. China
| | - Hai I. Wang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University Kunigami-gun, Okinawa 904-0495 Japan
| |
Collapse
|
10
|
Jin E, Fu S, Hanayama H, Addicoat MA, Wei W, Chen Q, Graf R, Landfester K, Bonn M, Zhang KAI, Wang HI, Müllen K, Narita A. A Nanographene-Based Two-Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202114059. [PMID: 34870362 PMCID: PMC9299764 DOI: 10.1002/anie.202114059] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 01/14/2023]
Abstract
Synthesis of covalent organic frameworks (COFs) with desirable organic units furnishes advanced materials with unique functionalities. As an emerging class of two-dimensional (2D) COFs, sp2 -carbon-conjugated COFs provide a facile platform to build highly stable and crystalline porous polymers. Herein, a 2D olefin-linked COF was prepared by employing nanographene, namely, dibenzo[hi,st]ovalene (DBOV), as a building block. The DBOV-COF exhibits unique ABC-stacked lattices, enhanced stability, and charge-carrier mobility of ≈0.6 cm2 V-1 s-1 inferred from ultrafast terahertz photoconductivity measurements. The ABC-stacking structure was revealed by the high-resolution transmission electron microscopy and powder X-ray diffraction. DBOV-COF demonstrated remarkable photocatalytic activity in hydroxylation, which was attributed to the exposure of narrow-energy-gap DBOV cores in the COF pores, in conjunction with efficient charge transport following light absorption.
Collapse
Affiliation(s)
- Enquan Jin
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shuai Fu
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami-gun, Okinawa904-0495Japan
| | - Matthew A. Addicoat
- School of Science and TechnologyNottingham Trent UniversityClifton Lane, NottinghamNG11 8NSUK
| | - Wenxin Wei
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Qiang Chen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Robert Graf
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | | | - Mischa Bonn
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Kai A. I. Zhang
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of Materials ScienceFudan UniversityShanghai200433P.R. China
| | - Hai I. Wang
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Klaus Müllen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Akimitsu Narita
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami-gun, Okinawa904-0495Japan
| |
Collapse
|
11
|
Emmerling ST, Ziegler F, Fischer FR, Schoch R, Bauer M, Plietker B, Buchmeiser MR, Lotsch BV. Olefin Metathesis in Confinement: Towards Covalent Organic Framework Scaffolds for Increased Macrocyclization Selectivity. Chemistry 2021; 28:e202104108. [PMID: 34882848 PMCID: PMC9305778 DOI: 10.1002/chem.202104108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 12/02/2022]
Abstract
Covalent organic frameworks (COFs) offer vast structural and chemical diversity enabling a wide and growing range of applications. While COFs are well‐established as heterogeneous catalysts, so far, their high and ordered porosity has scarcely been utilized to its full potential when it comes to spatially confined reactions in COF pores to alter the outcome of reactions. Here, we present a highly porous and crystalline, large‐pore COF as catalytic support in α,ω‐diene ring‐closing metathesis reactions, leading to increased macrocyclization selectivity. COF pore‐wall modification by immobilization of a Grubbs‐Hoveyda‐type catalyst via a mild silylation reaction provides a molecularly precise heterogeneous olefin metathesis catalyst. An increased macro(mono)cyclization (MMC) selectivity over oligomerization (O) for the heterogeneous COF‐catalyst (MMC:O=1.35) of up to 51 % compared to the homogeneous catalyst (MMC:O=0.90) was observed along with a substrate‐size dependency in selectivity, pointing to diffusion limitations induced by the pore confinement.
Collapse
Affiliation(s)
- Sebastian T Emmerling
- Max-Planck-Institut für Festkörperforschung: Max-Planck-Institut fur Festkorperforschung, Nanochemistry, GERMANY
| | | | | | | | | | - Bernd Plietker
- Technische Universitat Dresden, Organische Chemie, GERMANY
| | | | - Bettina Valeska Lotsch
- Max Planck Institute for Solid State Research, Nanochemistry, Heisenbergstraße 1, 70569, Stuttgart, GERMANY
| |
Collapse
|
12
|
Liang R, Samanta J, Shao B, Zhang M, Staples RJ, Chen AD, Tang M, Wu Y, Aprahamian I, Ke C. A Heteromeric Carboxylic Acid Based Single‐Crystalline Crosslinked Organic Framework. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rongran Liang
- Department of Chemistry Dartmouth College 6128 Burke Laboratory Hanover NH 03755 USA
| | - Jayanta Samanta
- Department of Chemistry Dartmouth College 6128 Burke Laboratory Hanover NH 03755 USA
| | - Baihao Shao
- Department of Chemistry Dartmouth College 6128 Burke Laboratory Hanover NH 03755 USA
| | - Mingshi Zhang
- Department of Chemistry Dartmouth College 6128 Burke Laboratory Hanover NH 03755 USA
| | - Richard J. Staples
- Department of Chemistry Michigan State University 578 S. Shaw Lane East Lansing MI 48824 USA
| | - Albert D. Chen
- Department of Chemistry Dartmouth College 6128 Burke Laboratory Hanover NH 03755 USA
| | - Miao Tang
- Department of Chemistry Dartmouth College 6128 Burke Laboratory Hanover NH 03755 USA
| | - Yuyang Wu
- IMSERC Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Ivan Aprahamian
- Department of Chemistry Dartmouth College 6128 Burke Laboratory Hanover NH 03755 USA
| | - Chenfeng Ke
- Department of Chemistry Dartmouth College 6128 Burke Laboratory Hanover NH 03755 USA
| |
Collapse
|
13
|
Liang R, Samanta J, Shao B, Zhang M, Staples R, Chen A, Tang M, Wu Y, Aprahamian I, Ke C. A Heteromeric Carboxylic-acid-based Single Crystalline Crosslinked Organic Framework. Angew Chem Int Ed Engl 2021; 60:23176-23181. [PMID: 34378288 DOI: 10.1002/anie.202109987] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 11/05/2022]
Abstract
The development of large pore single-crystalline covalently linked organic frameworks is critical in revealing the detailed structure-property relationship with substrates. One emergent approach is to photo-crosslink hydrogen-bonded molecular crystals. Introducing complementary hydrogen-bonded carboxylic acid building blocks is promising to construct large pore networks, but these molecules often form interpenetrated networks or non-porous solids. Herein, we introduced heteromeric carboxylic acid dimers to construct a non-interpenetrated molecular crystal. Crosslinking this crystal precursor with dithiols afforded a large pore single-crystalline hydrogen-bonded crosslinked organic framework HCOF-101. X-ray diffraction analysis revealed HCOF-101 as an interlayer connected hexagonal network, which possesses flexible linkages and large porous channels to host a hydrazone photoswitch. Multicycle Z/E-isomerization of the hydrazone took place reversibly within HCOF-101, showcasing the potential use of HCOF-101 for optical information storage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miao Tang
- Dartmouth College, Chemistry, UNITED STATES
| | - Yuyang Wu
- Northwestern University, IMSERC, UNITED STATES
| | | | - Chenfeng Ke
- Dartmouth College, Department of Chemistry, 41 College Street, 03755, Hanover, UNITED STATES
| |
Collapse
|
14
|
Zhang M, Li Y, Yuan W, Guo X, Bai C, Zou Y, Long H, Qi Y, Li S, Tao G, Xia C, Ma L. Construction of Flexible Amine-linked Covalent Organic Frameworks by Catalysis and Reduction of Formic Acid via the Eschweiler-Clarke Reaction. Angew Chem Int Ed Engl 2021; 60:12396-12405. [PMID: 33682274 DOI: 10.1002/anie.202102373] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 12/16/2022]
Abstract
Compared to the current mainstream rigid covalent organic frameworks (COFs) linked by imine bonds, flexible COFs have certain advantages of elasticity and self-adaptability, but their construction and application are greatly limited by the complexity in synthesis and difficulty in obtaining regular structure. Herein, we reported for the first time a series of flexible amine-linked COFs with high crystallinity synthesized by formic acid with unique catalytic and reductive bifunctional properties, rather than acetic acid, the most common catalyst for COF synthesis. The reaction mechanism was demonstrated to be a synchronous in situ reduction during the formation of imine bond. The flexibilities of the products endow them with accommodative adaptability to guest molecules, thus increasing the adsorption capacities for nitrogen and iodine by 27 % and 22 %, respectively. Impressively, a novel concept of flexibilization degree was proposed firstly, which provides an effective approach to rationally measure the flexibility of COFs.
Collapse
Affiliation(s)
- Meicheng Zhang
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu, 610064, P. R. China
| | - Yang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wenli Yuan
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu, 610064, P. R. China
| | - Xinghua Guo
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu, 610064, P. R. China
| | - Chiyao Bai
- Chengdu New Radiomedicine Technology CO. LTD., Chengdu, 610064, P. R. China
| | - Yingdi Zou
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu, 610064, P. R. China
| | - Honghan Long
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu, 610064, P. R. China
| | - Yue Qi
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu, 610064, P. R. China
| | - Shoujian Li
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu, 610064, P. R. China
| | - Guohong Tao
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu, 610064, P. R. China
| | - Chuanqin Xia
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu, 610064, P. R. China
| | - Lijian Ma
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Chengdu, 610064, P. R. China
| |
Collapse
|
15
|
An S, Xu Q, Ni Z, Hu J, Peng C, Zhai L, Guo Y, Liu H. Construction of Covalent Organic Frameworks with Crown Ether Struts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shuhao An
- School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute (SARI) Chinese Academy of Sciences (CAS) Shanghai 201210 P. R. China
| | - Zhihui Ni
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Jun Hu
- School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Changjun Peng
- School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Yu Guo
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute (SARI) Chinese Academy of Sciences (CAS) Shanghai 201210 P. R. China
| | - Honglai Liu
- School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
16
|
Zhang M, Li Y, Yuan W, Guo X, Bai C, Zou Y, Long H, Qi Y, Li S, Tao G, Xia C, Ma L. Construction of Flexible Amine‐linked Covalent Organic Frameworks by Catalysis and Reduction of Formic Acid via the Eschweiler–Clarke Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Meicheng Zhang
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education Chengdu 610064 P. R. China
| | - Yang Li
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Wenli Yuan
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education Chengdu 610064 P. R. China
| | - Xinghua Guo
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education Chengdu 610064 P. R. China
| | - Chiyao Bai
- Chengdu New Radiomedicine Technology CO. LTD. Chengdu 610064 P. R. China
| | - Yingdi Zou
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education Chengdu 610064 P. R. China
| | - Honghan Long
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education Chengdu 610064 P. R. China
| | - Yue Qi
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education Chengdu 610064 P. R. China
| | - Shoujian Li
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education Chengdu 610064 P. R. China
| | - Guohong Tao
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education Chengdu 610064 P. R. China
| | - Chuanqin Xia
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education Chengdu 610064 P. R. China
| | - Lijian Ma
- College of Chemistry Sichuan University Key Laboratory of Radiation Physics & Technology Ministry of Education Chengdu 610064 P. R. China
| |
Collapse
|
17
|
An S, Xu Q, Ni Z, Hu J, Peng C, Zhai L, Guo Y, Liu H. Construction of Covalent Organic Frameworks with Crown Ether Struts. Angew Chem Int Ed Engl 2021; 60:9959-9963. [PMID: 33599380 DOI: 10.1002/anie.202101163] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Crown ethers are a class of macrocyclic molecules with unique flexible structures but they are rarely integrated in covalent organic frameworks (COFs). To date, employing flexible organic units such as crown ethers to construct COFs with high crystallinity and surface area are still a challenge. In this work, two new COFs with different flexible crown ethers as backbone rather than side chains are synthesized and further employed for alkali metal ions separation. Both of COFs possess high surface areas, good crystallinity, and excellent chemical stability. Interestingly, these two new COFs with 18-crown-6 or 24-crown-8 units showed remarkable binding ability of K+ or Cs+ owing to the size-fit effect. This work demonstrated that the unique structural features of crown ethers will lead to increase interest in fabricating COFs with crown ethers.
Collapse
Affiliation(s)
- Shuhao An
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
| | - Zhihui Ni
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 45007, P. R. China
| | - Jun Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changjun Peng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 45007, P. R. China
| | - Yu Guo
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
| | - Honglai Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
18
|
N-Heterocyclic Carbene Functionalized Covalent Organic Framework for Transesterification of Glycerol with Dialkyl Carbonates. Catalysts 2021. [DOI: 10.3390/catal11040423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The development of a heterogeneous catalyst through the combination of novel carrier and powerful catalytic active sites is of particular interest. Herein, the successful integration of an N-Heterocyclic carbene (NHC) moiety into a covalent organic framework (COF) was achieved by coupling 4,4′,4′′,4′′′-(pyrene-1,3,6,8-tetrayl) tetraaniline (PyTTA) and equimolar 4,7-bis(4-formylphenyl)-1-methyl-1H-benzimidazole (IM) and 2′3′5′6′-tetrafluoro-[1,1′:4′,1′′-terphenyl]-4,4′-dicarbaldehyde (4F) followed by ionization with 1-bromobutane (C4H9Br) and then deprotonation upon addition of a base. The resulting material exhibited promising heterogeneous catalytic activity towards transesterification reaction of glycerol with dialkyl carbonate. Moreover, good recyclability granted no substantial loss of activity upon five cycles. Combination of COFs and NHCs might synergize their characteristics, thus providing more possibilities for creating new patterns of catalytic reactivity.
Collapse
|
19
|
Xu Z, Cui Y, Guo B, Li H, Li H. Boosting Visible‐Light‐Driven H
2
Evolution of Covalent Triazine Framework from Water by Modifying Ni(II) Pyrimidine‐2‐thiolate Cocatalyst. ChemCatChem 2020. [DOI: 10.1002/cctc.202001631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ze Xu
- College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P.R. China
| | - Yao Cui
- College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P.R. China
| | - Bin Guo
- College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P.R. China
| | - Hai‐Yan Li
- Analysis and Testing Center Soochow University Soochow University 215123 Suzhou P.R. China
| | - Hong‐Xi Li
- College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P.R. China
| |
Collapse
|
20
|
Chang Z, Liang Y, Wang S, Qiu L, Lu Y, Feng L, Sui Z, Chen Q. A novel fluorescent covalent organic framework containing boric acid groups for selective capture and sensing of cis-diol molecules. NANOSCALE 2020; 12:23748-23755. [PMID: 33231248 DOI: 10.1039/d0nr06110g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Owing to specific formation of five-membered or six-membered cyclic esters between boric acid groups and cis-diol molecules, boric acid bearing fluorescent materials can not only selectively capture but also specifically identify cis-diol substances. In this work, a novel covalent organic framework containing boric acid groups (COF-BA) was prepared through post-modification via the aza-Diels-Alder cycloaddition reaction. COF-BA with good stability, a permanent pore structure, a high specific surface area (606 m2 g-1) and a uniform pore size (2.59 nm) exhibited unique selectivity toward the cis-diol guest molecule 1,2-dihydroxyanthracene-9,10-dione (1,2-Doa) with a high adsorption capacity of 177.95 mg g-1. However, as for the isomers of 1,2-Doa (1,4-dihydroxyanthracene-9,10-dione and 2,6-dihydroxyanthracene-9,10-dione), the corresponding uptake capacities are distinctively decreased to 40.86 mg g-1 and 3.05 mg g-1, respectively. It is worth noting that the COF-BA can be recovered and recycled. Moreover, because the formation of the quinoline enhanced the conjugation effect of the COF skeleton, it was unexpectedly found that COF-BA possessed an intrinsic fluorescence property and could be used as an optical sensor for 1,2-Doa.
Collapse
Affiliation(s)
- Zhaosen Chang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Deng D, Meng Q, Li Z, Ma R, Yang Y, Wang Z, Zhang N, Zou X, Zhu G, Yuan Y. Enzyme-Inspired Assembly: Incorporating Multivariate Interactions to Optimize the Host-Guest Configuration for High-Speed Enantioselective Catalysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47966-47974. [PMID: 32975411 DOI: 10.1021/acsami.0c13802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To achieve a rapid asymmetry conversion, the substrate objects suffer from accelerated kinetic velocity and random rotation at the cost of selectivity. Inspired by natural enzymes, optimizing the host-guest configuration will realize the high-performance enantioselective conversion of chemical reactions. Herein, multivariate binding interactions were introduced into the 1D channel of a chiral catalyst to simulate the enzymatic action. An imidazolium group was used to electrophilically activate the C═O unit of a ketone substrate, and the counterion binds the hydrogen donor isopropanol. This binding effect around the catalytic center produces strong stereo-induction, resulting in high conversion (99.5% yield) and enantioselectivity (99.5% ee) for the asymmetric hydrogenation of biomass-derived acetophenone. In addition, the turnover frequency of the resulting catalyst (5160 h-1 TOF) is more than 58 times that of a homogeneous Ru-TsDPEN catalyst (88 h-1 TOF) under the same condition, which corresponds to the best performance reported till date among all existing catalysts for the considered reaction.
Collapse
Affiliation(s)
- Dan Deng
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Qinghao Meng
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Zhangnan Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Rongchen Ma
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yajie Yang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Zeyu Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Ning Zhang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xiaoqin Zou
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
22
|
Liu Y, Dikhtiarenko A, Xu N, Sun J, Tang J, Wang K, Xu B, Tong Q, Heeres HJ, He S, Gascon J, Fan Y. Triphenylphosphine-Based Covalent Organic Frameworks and Heterogeneous Rh-P-COFs Catalysts. Chemistry 2020; 26:12134-12139. [PMID: 32488940 PMCID: PMC7540510 DOI: 10.1002/chem.202002150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 11/25/2022]
Abstract
The synthesis of phosphine-based functional covalent organic frameworks (COFs) has attracted great attention recently. Herein, we present two examples of triphenylphosphine-based COFs (termed P-COFs) with well-defined crystalline structures, high specific surface areas, and good thermal stability. Furthermore, rhodium catalysts with these P-COFs as support material show high turnover frequency for the hydroformylation of olefins, as well as excellent recycling performance. This work not only extends the phosphine-based COF family, but also demonstrates their application in immobilizing homogeneous metal-based (e.g., Rh-phosphine) catalysts for application in heterogeneous catalysis.
Collapse
Affiliation(s)
- Yubing Liu
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Alla Dikhtiarenko
- KAUST Catalysis Center, Advanced Catalytic MaterialsKing Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Naizhang Xu
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Jiawei Sun
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Jie Tang
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Kaiqiang Wang
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Bolian Xu
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Qing Tong
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| | - Hero Jan Heeres
- Green Chemical Reaction EngineeringUniversity of Groningen9747 AGGroningenThe Netherlands
| | - Songbo He
- Green Chemical Reaction EngineeringUniversity of Groningen9747 AGGroningenThe Netherlands
| | - Jorge Gascon
- KAUST Catalysis Center, Advanced Catalytic MaterialsKing Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Yining Fan
- Key Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Vehicle Emissions ControlNanjing UniversityNanjing2100093P. R. China
| |
Collapse
|
23
|
Kang X, Han X, Yuan C, Cheng C, Liu Y, Cui Y. Reticular Synthesis of tbo Topology Covalent Organic Frameworks. J Am Chem Soc 2020; 142:16346-16356. [DOI: 10.1021/jacs.0c06605] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xing Kang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xing Han
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
24
|
He H, Zhu Q, Zhang W, Zhang H, Chen J, Li C, Du M. Metal and Co‐Catalyst Free CO
2
Conversion with a Bifunctional Covalent Organic Framework (COF). ChemCatChem 2020. [DOI: 10.1002/cctc.202000949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hongming He
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
| | - Qian‐Qian Zhu
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
| | - Wen‐Wen Zhang
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
| | - Han‐Wen Zhang
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
| | - Jing Chen
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
| | - Cheng‐Peng Li
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
| | - Miao Du
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
- College of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450001 P. R. China
| |
Collapse
|
25
|
Cui W, Li F, Xu R, Zhang C, Chen X, Yan R, Liang R, Qiu J. Regenerable Covalent Organic Frameworks for Photo‐enhanced Uranium Adsorption from Seawater. Angew Chem Int Ed Engl 2020; 59:17684-17690. [DOI: 10.1002/anie.202007895] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Wei‐Rong Cui
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Fang‐Fang Li
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Rui‐Han Xu
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Cheng‐Rong Zhang
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Xiao‐Rong Chen
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Run‐Han Yan
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Ru‐Ping Liang
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Jian‐Ding Qiu
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| |
Collapse
|
26
|
Cui W, Li F, Xu R, Zhang C, Chen X, Yan R, Liang R, Qiu J. Regenerable Covalent Organic Frameworks for Photo‐enhanced Uranium Adsorption from Seawater. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007895] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Wei‐Rong Cui
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Fang‐Fang Li
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Rui‐Han Xu
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Cheng‐Rong Zhang
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Xiao‐Rong Chen
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Run‐Han Yan
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Ru‐Ping Liang
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Jian‐Ding Qiu
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| |
Collapse
|
27
|
Chen X, Dang Q, Sa R, Li L, Li L, Bi J, Zhang Z, Long J, Yu Y, Zou Z. Integrating single Ni sites into biomimetic networks of covalent organic frameworks for selective photoreduction of CO 2. Chem Sci 2020; 11:6915-6922. [PMID: 33033603 PMCID: PMC7499818 DOI: 10.1039/d0sc01747g] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/09/2020] [Indexed: 11/21/2022] Open
Abstract
Selective photoreduction of CO2 into a given product is a great challenge but desirable. Inspired by natural photosynthesis occurring in hierarchical networks over non-precious molecular metal catalysts, we demonstrate an integration of single Ni sites into the hexagonal pores of polyimide covalent organic frameworks (PI-COFs) for selective photoreduction of CO2 to CO. The single Ni sites in the hexagonal pores of the COFs serve as active sites for CO2 activation and conversion, while the PI-COFs not only act as a photosensitizer to generate charge carriers but also exert a promoting effect on the selectivity. The optimized PI-COF with a triazine ring exhibits excellent activity and selectivity. A possible intra- and inter-molecular charge-transfer mechanism was proposed, in which the photogenerated electrons in PI-COFs are efficiently separated from the central ring to the diimide linkage, and then transferred to the single Ni active sites, as evidenced by theoretical calculations.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Eco-materials Advanced Technology , College of Materials Science and Engineering , Fuzhou University , Fuzhou 350108 , China . ; ;
| | - Qiang Dang
- Key Laboratory of Eco-materials Advanced Technology , College of Materials Science and Engineering , Fuzhou University , Fuzhou 350108 , China . ; ;
| | - Rongjian Sa
- Institute of Oceanography , Ocean College , Minjiang University , Fuzhou , Fujian 350108 , China
| | - Liuyi Li
- Key Laboratory of Eco-materials Advanced Technology , College of Materials Science and Engineering , Fuzhou University , Fuzhou 350108 , China . ; ;
| | - Lingyun Li
- Key Laboratory of Eco-materials Advanced Technology , College of Materials Science and Engineering , Fuzhou University , Fuzhou 350108 , China . ; ;
| | - Jinhong Bi
- Key Laboratory of Eco-materials Advanced Technology , College of Materials Science and Engineering , Fuzhou University , Fuzhou 350108 , China . ; ;
- State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| | - Zizhong Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| | - Yan Yu
- Key Laboratory of Eco-materials Advanced Technology , College of Materials Science and Engineering , Fuzhou University , Fuzhou 350108 , China . ; ;
| | - Zhigang Zou
- Key Laboratory of Eco-materials Advanced Technology , College of Materials Science and Engineering , Fuzhou University , Fuzhou 350108 , China . ; ;
- Eco-materials and Renewable Energy Research Center , College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
| |
Collapse
|
28
|
Zhi Y, Wang Z, Zhang HL, Zhang Q. Recent Progress in Metal-Free Covalent Organic Frameworks as Heterogeneous Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001070. [PMID: 32419332 DOI: 10.1002/smll.202001070] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 05/28/2023]
Abstract
Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal-organic frameworks, COFs are a new type of porous materials with well-designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal-free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF-based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented.
Collapse
Affiliation(s)
- Yongfeng Zhi
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zongrui Wang
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, P. R. China
| | - Qichun Zhang
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue, Singapore, 639798, Singapore
- Department Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
29
|
Yang Y, He X, Zhang P, Andaloussi YH, Zhang H, Jiang Z, Chen Y, Ma S, Cheng P, Zhang Z. Combined Intrinsic and Extrinsic Proton Conduction in Robust Covalent Organic Frameworks for Hydrogen Fuel Cell Applications. Angew Chem Int Ed Engl 2020; 59:3678-3684. [DOI: 10.1002/anie.201913802] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/12/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Yi Yang
- Renewable energy conversion and storage centerCollege of ChemistryNankai University Tianjin 300071 China
| | - Xueyi He
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Penghui Zhang
- Renewable energy conversion and storage centerCollege of ChemistryNankai University Tianjin 300071 China
| | - Yassin H. Andaloussi
- Department of Chemical Sciences, Bernal InstituteUniversity of Limerick Limerick V94 T9PX Republic of Ireland
| | - Hailu Zhang
- Suzhou institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 China
| | - Zhongyi Jiang
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biologyNankai University Tianjin 300071 China
| | - Shengqian Ma
- Department of ChemistryUniversity of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Peng Cheng
- Renewable energy conversion and storage centerCollege of ChemistryNankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials ChemistryMinistry of EducationNankai University Tianjin 300071 China
| | - Zhenjie Zhang
- Renewable energy conversion and storage centerCollege of ChemistryNankai University Tianjin 300071 China
- State Key Laboratory of Medicinal Chemical biologyNankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials ChemistryMinistry of EducationNankai University Tianjin 300071 China
| |
Collapse
|
30
|
Liu J, Wang N, Ma L. Recent Advances in Covalent Organic Frameworks for Catalysis. Chem Asian J 2020; 15:338-351. [DOI: 10.1002/asia.201901527] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/10/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Jianguo Liu
- Guangzhou Institute of Energy ConversionChinese Academy of Sciences 510640 Guangzhou China
- Key Laboratory of Renewable EnergyChinese Academy of Sciences 510640 Guangzhou China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development 510640 Guangzhou China
| | - Nan Wang
- Guangzhou Institute of Energy ConversionChinese Academy of Sciences 510640 Guangzhou China
- Key Laboratory of Renewable EnergyChinese Academy of Sciences 510640 Guangzhou China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development 510640 Guangzhou China
- School of Environmental Science and EngineeringTianjin University Tianjin 300350 China
| | - Longlong Ma
- Guangzhou Institute of Energy ConversionChinese Academy of Sciences 510640 Guangzhou China
- Key Laboratory of Renewable EnergyChinese Academy of Sciences 510640 Guangzhou China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development 510640 Guangzhou China
- School of Environmental Science and EngineeringTianjin University Tianjin 300350 China
| |
Collapse
|
31
|
Yang Y, He X, Zhang P, Andaloussi YH, Zhang H, Jiang Z, Chen Y, Ma S, Cheng P, Zhang Z. Combined Intrinsic and Extrinsic Proton Conduction in Robust Covalent Organic Frameworks for Hydrogen Fuel Cell Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913802] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yi Yang
- Renewable energy conversion and storage centerCollege of ChemistryNankai University Tianjin 300071 China
| | - Xueyi He
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Penghui Zhang
- Renewable energy conversion and storage centerCollege of ChemistryNankai University Tianjin 300071 China
| | - Yassin H. Andaloussi
- Department of Chemical Sciences, Bernal InstituteUniversity of Limerick Limerick V94 T9PX Republic of Ireland
| | - Hailu Zhang
- Suzhou institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 China
| | - Zhongyi Jiang
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biologyNankai University Tianjin 300071 China
| | - Shengqian Ma
- Department of ChemistryUniversity of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Peng Cheng
- Renewable energy conversion and storage centerCollege of ChemistryNankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials ChemistryMinistry of EducationNankai University Tianjin 300071 China
| | - Zhenjie Zhang
- Renewable energy conversion and storage centerCollege of ChemistryNankai University Tianjin 300071 China
- State Key Laboratory of Medicinal Chemical biologyNankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials ChemistryMinistry of EducationNankai University Tianjin 300071 China
| |
Collapse
|