1
|
Vasiļevska A, Slanina T. Structure-property-function relationships of stabilized and persistent C- and N-based triaryl radicals. Chem Commun (Camb) 2024; 60:252-264. [PMID: 38086625 DOI: 10.1039/d3cc05706b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Structurally similar C- and N-based triaryl radicals are among the most commonly used structural motifs in stable, open-shell, organic molecules. The application of such species is associated with their stability, properties and structural design. This study summarizes the basic stabilization and persistence principles of C- and N-based triaryl radicals and highlights recent advances in design strategies of radicals tailored for specific applications.
Collapse
Affiliation(s)
- Anna Vasiļevska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
- Department of Organic Chemistry, Charles University, 128 00 Prague 2, Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
2
|
Hou B, Li K, He H, Hu J, Xu Z, Xiang Q, Wang P, Chen X, Sun Z. Stable Crystalline Nanohoop Radical and Its Self-Association Promoted by van der Waals Interactions. Angew Chem Int Ed Engl 2023; 62:e202301046. [PMID: 36754831 DOI: 10.1002/anie.202301046] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
A stable nanohoop radical (OR3) combining the structures of cycloparaphenylene and an olympicenyl radical is synthesized and isolated in the crystalline state. X-ray crystallographic analysis reveals that OR3 forms a unique head-to-tail dimer that further aggregates into a one-dimensional chain in the solid state. Variable-temperature NMR and concentration-dependent absorption measurements indicate that the π-dimer is not formed in solution. An energy decomposition analysis indicates that van der Waals interactions are the driving force for the self-association process, in contrast with other olympicenyl derivatives that favor π-dimerization. The physical properties in solution phase have been studied, and the stable cationic species obtained by one-electron chemical oxidation. This study offers a new molecular design to modulate the self-association of organic radicals for overcoming the spin-Peierls transition, and to prepare novel nanohoop compounds with spin-related properties.
Collapse
Affiliation(s)
- Bingxia Hou
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Ke Li
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Huijie He
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Jinlian Hu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Zhuofan Xu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Qin Xiang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Peng Wang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Xing Chen
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| |
Collapse
|
3
|
Effects of Electron Donating Ability of Substituents and Molecular Conjugation on the Electronic Structures of Organic Radicals. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
4
|
Merschel A, Rottschäfer D, Neumann B, Stammler HG, Ringenberg M, van Gastel M, Demirer TI, Andrada DM, Ghadwal RS. Crystalline Anions Based on Classical N-Heterocyclic Carbenes. Angew Chem Int Ed Engl 2023; 62:e202215244. [PMID: 36398890 PMCID: PMC10107637 DOI: 10.1002/anie.202215244] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Herein, the first stable anions K[SIPrBp ] (4 a-K) and K[IPrBp ] (4 b-K) (SIPrBp =BpC{N(Dipp)CH2 }2 , IPrBp =BpC{N(Dipp)CH}2 ; Bp=4-PhC6 H4 ; Dipp=2,6-iPr2 C6 H3 ) derived from classical N-heterocyclic carbenes (NHCs) (i.e. SIPr and IPr) have been isolated as violet crystalline solids. 4 a-K and 4 b-K are prepared by KC8 reduction of the neutral radicals [SIPrBp ] (3 a) and [IPrBp ] (3 b), respectively. The radicals 3 a and 3 b as well as [Me-IPrBp ] 3 c (Me-IPrBp =BpC{N(Dipp)CMe}2 ) are accessible as crystalline solids on treatment of the respective 1,3-imidazoli(ni)um bromides (SIPrBp )Br (2 a), (IPrBp )Br (2 b), and (Me-IPrBp )Br (2 c) with KC8 . The cyclic voltammograms of 2 a-2 c exhibit two one-electron reversible redox processes in -0.5 to -2.5 V region that correspond to the radicals 3 a-3 c and the anions (4 a-4 c)- . Computational calculations suggest a closed-shell singlet ground state for (4 a-4 c)- with the singlet-triplet energy gap of 17-24 kcal mol-1 .
Collapse
Affiliation(s)
- Arne Merschel
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Dennis Rottschäfer
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.,Current address: Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, Marburg, Germany
| | - Beate Neumann
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Mark Ringenberg
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim a. d. Ruhr, Germany
| | - T Ilgin Demirer
- Allgemeine und Anorganische Chemie, Universität des Saarlandes, 66123, Saarbrücken, Germany
| | - Diego M Andrada
- Allgemeine und Anorganische Chemie, Universität des Saarlandes, 66123, Saarbrücken, Germany
| | - Rajendra S Ghadwal
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
5
|
Sieg G, Müller I, Weißer K, Werncke CG. Taming the stilbene radical anion. Chem Sci 2022; 13:13872-13878. [PMID: 36544743 PMCID: PMC9710230 DOI: 10.1039/d2sc04451j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Radical anions appear as intermediates in a variety of organic reductions and have recently garnered interest for their role as mediators for electron-driven catalysis as well as for organic electron conductor materials. Due to their unstable nature, the isolation of such organic radical anions is usually only possible by using extended aromatic systems, whereas non-aromatic unsaturated hydrocarbons have so far only been observed in situ. We herein report the first isolation, structure and spectroscopic characterization of a simple aryl substituted alkene radical anion, namely that of stilbene (1,2-diphenyl ethylene), achieved by encapsulation between two [K{18c6}] cations. The formation of the radical anion is accompanied by Z → E isomerization of the involved double bond, also on a catalytic scale. Employing the linear iron(i) complex [Fe(NR2)2]- as a reductant and coordination site also allows for this transformation, via formation of an iron(ii) bound radical anion. The use of the iron complex now also allows for Z → E isomerization of electron richer, simple alkenes bearing either mixed alkyl/aryl or even bis(alkyl) substitution.
Collapse
Affiliation(s)
- Grégoire Sieg
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Straße 4 35037 Marburg Germany
| | - Igor Müller
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Straße 4 35037 Marburg Germany
| | - Kilian Weißer
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - C Gunnar Werncke
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Straße 4 35037 Marburg Germany
| |
Collapse
|
6
|
Murata T, Yoshida K, Suzuki S, Ueda A, Nishida S, Kawai J, Fukui K, Sato K, Takui T, Nakasuji K, Morita Y. Double‐σ‐Bonded Close‐Shell Dimers and Peroxy‐Linked Open‐Shell Dimer Derived from a
C
3
Symmetric Trioxophenalenyl Neutral Diradical. Chemistry 2022; 28:e202201426. [DOI: 10.1002/chem.202201426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Tsuyoshi Murata
- Department of Applied Chemistry, Faculty of Engineering Aichi Institute of Technology Yachigusa 1247, Yakusa Toyota Aichi Japan
| | - Kenta Yoshida
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama 1–1 Toyonaka Osaka Japan
| | - Shuichi Suzuki
- Department of Chemistry Graduate School of Engineering Science Osaka University Machikaneyama 1–3 Toyonaka Osaka Japan
| | - Akira Ueda
- Department of Chemistry Faculty of Advanced Science and Technology Kumamoto University 2-39-1 Kurokami Chuo-ku Kumamoto Japan
| | - Shinsuke Nishida
- Department of Applied Chemistry, Faculty of Engineering Aichi Institute of Technology Yachigusa 1247, Yakusa Toyota Aichi Japan
| | - Junya Kawai
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama 1–1 Toyonaka Osaka Japan
| | - Kozo Fukui
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama 1–1 Toyonaka Osaka Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science Graduate School of Science Osaka City University/Osaka Metropolitan University Sugimoto 3–3-138 Sumiyoshi-ku Osaka Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science Graduate School of Science Osaka City University/Osaka Metropolitan University Sugimoto 3–3-138 Sumiyoshi-ku Osaka Japan
| | - Kazuhiro Nakasuji
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama 1–1 Toyonaka Osaka Japan
| | - Yasushi Morita
- Department of Applied Chemistry, Faculty of Engineering Aichi Institute of Technology Yachigusa 1247, Yakusa Toyota Aichi Japan
| |
Collapse
|
7
|
Breitwieser K, Bahmann H, Weiss R, Munz D. Gauging Radical Stabilization with Carbenes. Angew Chem Int Ed Engl 2022; 61:e202206390. [PMID: 35796423 PMCID: PMC9545232 DOI: 10.1002/anie.202206390] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 11/29/2022]
Abstract
Carbenes, including N-heterocyclic carbene (NHC) ligands, are used extensively to stabilize open-shell transition metal complexes and organic radicals. Yet, it remains unknown, which carbene stabilizes a radical well and, thus, how to design radical-stabilizing C-donor ligands. With the large variety of C-donor ligands experimentally investigated and their electronic properties established, we report herein their radical-stabilizing effect. We show that radical stabilization can be understood by a captodative frontier orbital description involving π-donation to- and π-donation from the carbenes. This picture sheds a new perspective on NHC chemistry, where π-donor effects usually are assumed to be negligible. Further, it allows for the intuitive prediction of the thermodynamic stability of covalent radicals of main group- and transition metal carbene complexes, and the quantification of redox non-innocence.
Collapse
Affiliation(s)
- Kevin Breitwieser
- Coordination ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
| | - Hilke Bahmann
- Physical and Theoretical ChemistrySaarland UniversityCampus B2.266123SaarbrückenGermany
| | - Robert Weiss
- Organische ChemieFriedrich-Alexander-Universität (FAU) Erlangen-NürnbergHenkestr. 4291054ErlangenGermany
| | - Dominik Munz
- Coordination ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
- Inorganic and General ChemistryFriedrich-Alexander-Universität (FAU) Erlangen-NürnbergEgerlandstr. 191058ErlangenGermany
| |
Collapse
|
8
|
Zhang S, Ma L, Ma W, Chen L, Gao K, Yu S, Zhang M, Zhang L, He G. Selenoviologen‐Appendant Metallacycles with Highly Stable Radical Cations and Long‐Lived Charge Separation States for Electrochromism and Photocatalysis. Angew Chem Int Ed Engl 2022; 61:e202209054. [DOI: 10.1002/anie.202209054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Sikun Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Wenqiang Ma
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Long Chen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Kai Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Shi Yu
- School of Materials Science & Engineering Chang'an University Xi'an Shaanxi 710064 China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Lei Zhang
- School of Optoelectronic Engineering Xidian University Xi'an Shaanxi 710126 China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| |
Collapse
|
9
|
Zhang S, Ma L, Ma W, Chen L, Gao K, Yu S, Zhang M, Zhang L, He G. Selenoviologen‐Appendant Metallacycles with Highly Stable Radical Cations and Long‐Lived Charge Separation States for Electrochromism and Photocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sikun Zhang
- Xi'an Jiaotong University Frontier Institute of Science and Technology Xi'an CHINA
| | - Lingzhi Ma
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Wenqiang Ma
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Long Chen
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Kai Gao
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Shi Yu
- Chang'an University School of Materials Science & Engineering CHINA
| | - Mingming Zhang
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Lei Zhang
- Xidian University School of Optoelectronic Engineering CHINA
| | - Gang He
- Xi'an Jiaotong University Frontier Institute of Science and Technology No 99, Yanxiang Road 710054 Xi'an CHINA
| |
Collapse
|
10
|
Breitwieser K, Bahmann H, Weiss R, Munz D. Gauging Radical Stabilization with Carbenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kevin Breitwieser
- Saarland University: Universitat des Saarlandes Coordination Chemistry GERMANY
| | - Hilke Bahmann
- Saarland University: Universitat des Saarlandes Theoretical Chemistry GERMANY
| | - Robert Weiss
- FAU Erlangen Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Organic Chemistry GERMANY
| | - Dominik Munz
- Universitat des Saarlandes Inorganic Chemistry: Coordination Chemistry Campus C 4.1 66123 Saarbrücken GERMANY
| |
Collapse
|
11
|
Du M, Houck HA, Yin Q, Xu Y, Huang Y, Lan Y, Yang L, Du Prez FE, Chang G. Force-reversible chemical reaction at ambient temperature for designing toughened dynamic covalent polymer networks. Nat Commun 2022; 13:3231. [PMID: 35680925 PMCID: PMC9184613 DOI: 10.1038/s41467-022-30972-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
Force-reversible C-N bonds, resulting from the click chemistry reaction between triazolinedione (TAD) and indole derivatives, offer exciting opportunities for molecular-level engineering to design materials that respond to mechanical loads. Here, we displayed that TAD-indole adducts, acting as crosslink points in dry-state covalently crosslinked polymers, enable materials to display reversible stress-responsiveness in real time already at ambient temperature. Whereas the exergonic TAD-indole reaction results in the formation of bench-stable adducts, they were shown to dissociate at ambient temperature when embedded in a polymer network and subjected to a stretching force to recover the original products. Moreover, the nascent TAD moiety can spontaneously and immediately be recombined after dissociation with an indole reaction partners at ambient temperature, thus allowing for the adjustment of the polymer segment conformation and the maintenance of the network integrity by force-reversible behaviors. Overall, our strategy represents a general method to create toughened covalently crosslinked polymer materials with simultaneous enhancement of mechanical strength and ductility, which is quite challenging to achieve by conventional chemical methods. Weak force-activated covalent bonds as crosslink points can increase mechanical strength and ductility in polymers but the bonds, once broken, cannot be reformed in real time under ambient conditions leading to irreversible damage. Here, the authors demonstrate that triazolinedione (TAD)-indole adducts acting as crosslink points enable materials to display already at ambient temperature reversible stress-responsiveness in real time.
Collapse
Affiliation(s)
- Mengqi Du
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Hannes A Houck
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000, Ghent, Belgium
| | - Qiang Yin
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Yewei Xu
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Ying Huang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Yang Lan
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Li Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China. .,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000, Ghent, Belgium.
| | - Guanjun Chang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China. .,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Hogan DT, Dubrawski Z, Gelfand BS, Sutherland TC. High‐Fidelity Dimerization of Xanthenyl Radicals and Dynamic Qualities of a Congested Ethane: Diethyl Dixanthenyl‐9,9′‐Dicarboxylate. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David T. Hogan
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary AB T2N 1N4 Canada
| | - Zachary Dubrawski
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary AB T2N 1N4 Canada
| | - Benjamin S. Gelfand
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary AB T2N 1N4 Canada
| | - Todd C. Sutherland
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary AB T2N 1N4 Canada
| |
Collapse
|
13
|
Delfau L, Nichilo S, Molton F, Broggi J, Tomás‐Mendivil E, Martin D. Critical Assessment of the Reducing Ability of Breslow-type Derivatives and Implications for Carbene-Catalyzed Radical Reactions*. Angew Chem Int Ed Engl 2021; 60:26783-26789. [PMID: 34651408 PMCID: PMC9299025 DOI: 10.1002/anie.202111988] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 01/05/2023]
Abstract
We report the synthesis of acyl azolium salts stemming from thiazolylidenes CNS , triazolylidenes CTN, mesoionic carbenes CMIC and the generation of their corresponding radicals and enolates, covering about 60 Breslow-type derivatives. This study highlights the role of additives in the redox behavior of these compounds and unveils several critical misconceptions about radical transformations of aldehyde derivatives under N-heterocyclic carbene catalysis. In particular, the reducing ability of enolates has been dramatically underestimated in the case of biomimetic CNS . In contrast with previous electrochemical studies, we show that these catalytic intermediates can transfer electrons to iodobenzene within minutes at room temperature. Enols derived from CMIC are not the previously claimed super electron donors, although enolate derivatives of CNS and CMIC are powerful reducing agents.
Collapse
Affiliation(s)
| | | | | | - Julie Broggi
- Aix Marseille UnivCNRSInstitut de Chimie Radicalaire (ICR)27 Bd Jean Moulin13385MarseilleFrance
| | | | | |
Collapse
|
14
|
Delfau L, Nichilo S, Molton F, Broggi J, Tomás‐Mendivil E, Martin D. Critical Assessment of the Reducing Ability of Breslow‐type Derivatives and Implications for Carbene‐Catalyzed Radical Reactions**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | | | - Julie Broggi
- Aix Marseille Univ CNRS Institut de Chimie Radicalaire (ICR) 27 Bd Jean Moulin 13385 Marseille France
| | | | - David Martin
- Univ. Grenoble Alpes CNRS DCM 38000 Grenoble France
| |
Collapse
|
15
|
Zhang R, Ellern A, Winter AH. Anti-Aromaticity Relief as an Approach to Stabilize Free Radicals. Angew Chem Int Ed Engl 2021; 60:25082-25088. [PMID: 34528379 DOI: 10.1002/anie.202110870] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Indexed: 11/07/2022]
Abstract
A new strategy to stabilize free radicals electronically is described by conjugating formally antiaromatic substituents to the free radical. With an antiaromatic substituent, the radical acts as an electron sink to allow configuration mixing of a low-energy zwitterionic state that provides antiaromaticity relief to the substituent. A combination of X-ray crystallography, VT-EPR and VT-UV/Vis spectroscopy, as well as computational analysis, was used to investigate this phenomenon. We find that this strategy of antiaromaticity relief is successful at stabilizing radicals, but only if the antiaromatic substituent is constrained to be planar by synthetically imposed conformational restraints that enable state mixing. This work leads to the counterintuitive finding that increasing the antiaromaticity of the radical substituent leads to greater radical stability, providing proof of concept for a new stereoelectronic approach for stabilizing free radicals.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA, 50010, USA
| | - Arkady Ellern
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA, 50010, USA
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA, 50010, USA
| |
Collapse
|
16
|
Zhang R, Ellern A, Winter AH. Anti‐Aromaticity Relief as an Approach to Stabilize Free Radicals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rui Zhang
- Department of Chemistry Iowa State University 1605 Gilman Hall Ames IA 50010 USA
| | - Arkady Ellern
- Department of Chemistry Iowa State University 1605 Gilman Hall Ames IA 50010 USA
| | - Arthur H. Winter
- Department of Chemistry Iowa State University 1605 Gilman Hall Ames IA 50010 USA
| |
Collapse
|
17
|
Li B, Yang C, Wang X, Li G, Peng W, Xiao H, Luo S, Xie S, Wu J, Zeng Z. Synthesis and Structural Elucidation of Bisdibenzocorannulene in Multiple Redox States. Angew Chem Int Ed Engl 2021; 60:19790-19796. [PMID: 33956394 DOI: 10.1002/anie.202104520] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Indexed: 11/08/2022]
Abstract
We report an anti-folded bowl-shaped bisdibenzocorannulene (BDBC) featuring a new chair-cyclohexane-like hexagon as a bridge of two dibenzocorannulene moieties. The neutral compound showed multiple redox-active properties and could be converted to the corresponding redox states through chemical reduction or oxidation. Chemical reduction of BDBC by stoichiometric addition of metallic potassium in the presence of [18]crown-6 ether, provided a radical anion BDBC.- and a dianion BDBC2- , respectively; while chemical oxidation by silver hexafluoroantimonate(V), converted the neutral compound to an open-shell singlet diradical dication (BDBC.. )2+ . The structural consequences of both electron-reduction and oxidation were closely related to the release of ring-strain of the bowl-shaped π-scaffold and imposed steric hindrance of the hexagonal bridge. In addition, the unusual open-shell nature of the dication could mainly be attributed to the changing of localized antiaromaticity in the closed-shell structure to delocalized character in the biradical, and thus the emergence of weakly bonded π-electrons.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.,School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Chenxin Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xinhao Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Guangwu Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Wangwang Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Huiping Xiao
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Shenglian Luo
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Sheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
18
|
Li B, Yang C, Wang X, Li G, Peng W, Xiao H, Luo S, Xie S, Wu J, Zeng Z. Synthesis and Structural Elucidation of Bisdibenzocorannulene in Multiple Redox States. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bo Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- School of Materials Science and Engineering Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Chenxin Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xinhao Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guangwu Li
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Wangwang Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Huiping Xiao
- School of Materials Science and Engineering Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Shenglian Luo
- School of Materials Science and Engineering Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Sheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Jishan Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
19
|
Xiang Q, Xu J, Guo J, Dang Y, Xu Z, Zeng Z, Sun Z. Unveiling the Hidden σ-Dimerization of a Kinetically Protected Olympicenyl Radical. Chemistry 2021; 27:8203-8213. [PMID: 33783053 DOI: 10.1002/chem.202100631] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 11/05/2022]
Abstract
The σ-dimer of a kinetically protected olympicenyl radical, which evaded the experimental detection, was revealed by conversion into biolympicenylidene with E-configuration in a regioselective manner. The complicated stereochemistry and energetics of the σ-dimers derived from C2v symmetry and uneven spin distribution of the olympicenyl radical were revealed by the theoretical calculations, and the energetic preference of π-dimer over σ-dimer by a minute gap was disclosed. The E-biolympicenylidene, a polycyclic ene structure previously considered as reactive intermediate in the phenalenyl radical system, exhibited exceptional stability, which allowed for a detailed investigation on its singlet diradical character and physical properties by means of X-ray crystallography, UV-vis-NIR absorption/emission spectroscopy and cyclic voltammetry, and assisted by theoretical calculations. The E-biolympicenylidene showed high resistance towards both thermal and photochemical ring-cyclization reactions, which was attributed to high activation energies for the rate-determining electrocyclization operated on both disrotatory and conrotatory mode, as well as a small spin density at the bonding sites for the radical-radical coupling process.
Collapse
Affiliation(s)
- Qin Xiang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Jun Xu
- Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Center for Aggregation-Induced Emission, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yanfeng Dang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Zhanqiang Xu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Center for Aggregation-Induced Emission, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| |
Collapse
|
20
|
Sharma MK, Rottschäfer D, Neumann B, Stammler HG, Danés S, Andrada DM, van Gastel M, Hinz A, Ghadwal RS. Metalloradical Cations and Dications Based on Divinyldiphosphene and Divinyldiarsene Ligands. Chemistry 2021; 27:5803-5809. [PMID: 33470468 PMCID: PMC8048781 DOI: 10.1002/chem.202100213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 01/09/2023]
Abstract
Metalloradicals are key species in synthesis, catalysis, and bioinorganic chemistry. Herein, two iron radical cation complexes (3‐E)GaCl4 [(3‐E).+ = [{(IPr)C(Ph)E}2Fe(CO)3].+, E = P or As; IPr = C{(NDipp)CH}2, Dipp = 2,6‐iPr2C6H3] are reported as crystalline solids. Treatment of the divinyldipnictenes {(IPr)C(Ph)E}2 (1‐E) with Fe2(CO)9 affords [{(IPr)C(Ph)E}2Fe(CO)3] (2‐E), in which 1‐E binds to the Fe atom in an allylic (η3‐EECvinyl) fashion and functions as a 4e donor ligand. Complexes 2‐E undergo 1e oxidation with GaCl3 to yield (3‐E)GaCl4. Spin density analysis revealed that the unpaired electron in (3‐E).+ is mainly located on the Fe (52–64 %) and vinylic C (30–36 %) atoms. Further 1e oxidation of (3‐E)GaCl4 leads to unprecedented η3‐EECvinyl to η3‐ECvinylCPh coordination shuttling to form the dications (4‐E)(GaCl4)2.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Dennis Rottschäfer
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Sergi Danés
- Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus C4.1, 66123, Saarbrücken, Germany
| | - Diego M Andrada
- Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus C4.1, 66123, Saarbrücken, Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung Molecular Theory and Spectroscopy, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Alexander Hinz
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
21
|
Xie G, Bojanowski NM, Brosius V, Wiesner T, Rominger F, Freudenberg J, Bunz UHF. Stable N,N'-Diarylated Dihydrodiazaacene Radical Cations. Chemistry 2021; 27:1976-1980. [PMID: 33226146 PMCID: PMC7898594 DOI: 10.1002/chem.202004548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Indexed: 12/03/2022]
Abstract
Three stable N,N’‐diarylated dihydroazaacene radical cations were prepared by oxidation of neutral N,N’‐diarylated dihydroazaacenes synthesized via palladium‐catalyzed Buchwald‐Hartwig aminations of aryl iodides with N,N’‐dihydroazaacenes. Both neutral as well as oxidized species were investigated via UV‐vis spectroscopy, single crystal analysis, and DFT calculations. All the radical cations are surprisingly stable—their absorption spectra in dichloromethane remain unchanged in ambient conditions for at least 24 hours.
Collapse
Affiliation(s)
- Gaozhan Xie
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - N Maximilian Bojanowski
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Victor Brosius
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Thomas Wiesner
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
22
|
Wang Z, Gu S, Cao L, Kong L, Wang Z, Qin N, Li M, Luo W, Chen J, Wu S, Liu G, Yuan H, Bai Y, Zhang K, Lu Z. Redox of Dual-Radical Intermediates in a Methylene-Linked Covalent Triazine Framework for High-Performance Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:514-521. [PMID: 33326203 DOI: 10.1021/acsami.0c17692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Covalent triazine frameworks (CTFs) are promising electrodes for rechargeable batteries due to their adjustable structures, rich redox sites, and tunable porosity. However, the CTFs usually exhibit inferior electrochemical stability because of the inactivation of the unstable radical intermediates. Here, a methylene-linked CTF has been synthesized and evaluated as a cathode for rechargeable lithium-ion batteries. Electron paramagnetic resonance (EPR) and in situ Raman characterizations demonstrated that the redox activity and reversibility of α-C and triazine radical intermediates are essentially important for the charging/discharging process, which have been efficiently stabilized by the synergetic π conjugation and hindrance effect caused by the adjacent rigid triazine rings and benzene rings in the unique CTF-p framework. Additionally, the methylene groups provided extra redox-active sites. As a result, high capacity and cycling stability were achieved. This work inspires the rational modulation of the radical intermediates to enhance the electrochemical performance of organic electrode materials for the next-generation energy storage devices.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Materials Science and Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
| | - Shuai Gu
- Department of Materials Science and Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077 Hong Kong, P. R. China
| | - Lujie Cao
- Department of Materials Science and Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
| | - Long Kong
- Department of Materials Science and Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
| | - Zhenyu Wang
- Department of Materials Science and Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
| | - Ning Qin
- Department of Materials Science and Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077 Hong Kong, P. R. China
| | - Muqing Li
- Department of Materials Science and Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
| | - Wen Luo
- Department of Materials Science and Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
| | - Jingjing Chen
- Department of Materials Science and Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
| | - Sisi Wu
- Department of Materials Science and Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
| | - Guiyu Liu
- Department of Materials Science and Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
| | - Huimin Yuan
- Department of Materials Science and Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
| | - Yunfei Bai
- Department of Materials Science and Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077 Hong Kong, P. R. China
| | - Zhouguang Lu
- Department of Materials Science and Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
| |
Collapse
|
23
|
Tani F, Narita M, Murafuji T. Helicene Radicals: Molecules Bearing a Combination of Helical Chirality and Unpaired Electron Spin. Chempluschem 2020; 85:2093-2104. [DOI: 10.1002/cplu.202000452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/19/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Fumito Tani
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 819-0395 Japan
| | - Masahiro Narita
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 819-0395 Japan
| | - Toshihiro Murafuji
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi 753-8512 Japan
| |
Collapse
|
24
|
Kato K, Osuka A. Propeller-Shaped Semi-fused Porphyrin Trimers: Molecular-Symmetry-Dependent Chiroptical Response. Chemistry 2020; 26:10217-10221. [PMID: 32459376 DOI: 10.1002/chem.202002157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/26/2020] [Indexed: 11/09/2022]
Abstract
Triple helicene-like semi-fused trimeric NiII porphyrins were constructed by alkyne trimerization of an ethynyl-substituted porphyrin and subsequent three-fold Grignard addition to the formyl groups and acid-catalyzed intramolecular cyclization. The presence of stereogenic sp3 carbons in the central bridge leads to small inter-porphyrin conjugative interactions as was revealed by electrochemical and optical properties. Two diastereomers with stable chiral conformations were optically resolved, and the separated enantiomers displayed considerably intense circular dichroism. Importantly, the chiroptical response of C3 -symmetric helical isomer (|Δϵ|=830 m-1 cm-1 ) is 1.8 times amplified from that of C1 -symmetric one (|Δϵ|=470 m-1 cm-1 ). The observed amplification has been interpreted in terms of different spatial arrangements of the three porphyrins.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto, 606-8502, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto, 606-8502, Japan
| |
Collapse
|
25
|
Matsuo Y, Tanaka T, Osuka A. Highly Stable Radical Cations of N,N'-Diarylated Tetrabenzotetraaza[8]circulene. Chemistry 2020; 26:8144-8152. [PMID: 32342540 DOI: 10.1002/chem.202001934] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/24/2020] [Indexed: 01/09/2023]
Abstract
N,N'-Diarylated tetrabenzotetraaza[8]circulenes 3 a and 3 b were synthesized in good yields by a reaction sequence involving oxidation of tetrabenzodiazadithia[8]circulene 5-Oct and SN Ar reaction with aniline derivatives. The obtained aza[8]circulenes 3 a and 3 b were easily oxidized to give their radical cations 3 a+ and 3 b+ , which are highly stable under ambient conditions. X-ray diffraction analysis of radical cation 3 a+ showed a face-to-face dimer arrangement with an interplanar separation of 3.320 Å. The spin density of 3 a+ was calculated to be delocalized over the whole circulene π-systems with spin-spin exchange integral (J=-144 cm-1 ) in the dimeric part. These radical cations displayed far red-shifted absorption bands reaching to 2000 nm. Thus this study has proved the hetero[8]circulene scaffold to be a new entry of promising electronics and spin materials.
Collapse
Affiliation(s)
- Yusuke Matsuo
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takayuki Tanaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
26
|
Ooi S, Adinarayana B, Shimizu D, Tanaka T, Osuka A. Stable
meso
–
meso
‐Linked
2NH
‐Corrole Radical Dimers as a Key Intermediate to Corrole Tape. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shota Ooi
- Department of ChemistryGraduate School of ScienceKyoto University, Sakyo-ku Kyoto 606-8502 Japan
| | - B. Adinarayana
- Department of ChemistryGraduate School of ScienceKyoto University, Sakyo-ku Kyoto 606-8502 Japan
| | - Daiki Shimizu
- Department of ChemistryGraduate School of ScienceKyoto University, Sakyo-ku Kyoto 606-8502 Japan
| | - Takayuki Tanaka
- Department of ChemistryGraduate School of ScienceKyoto University, Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of ChemistryGraduate School of ScienceKyoto University, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
27
|
Ni Y, Gopalakrishna TY, Wu S, Wu J. A Stable All-Thiophene-Based Core-Modified [38]Octaphyrin Diradicaloid: Conformation and Aromaticity Switch at Different Oxidation States. Angew Chem Int Ed Engl 2020; 59:7414-7418. [PMID: 32052906 DOI: 10.1002/anie.202000188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 11/08/2022]
Abstract
A soluble and stable core-modified [38]octaphyrin, MC-T8, containing eight thiophene rings was synthesized by Yamamoto coupling followed by oxidative dehydrogenation. X-ray crystallographic analysis revealed a nearly planar backbone, and the molecule is globally aromatic with a dominant 38π conjugation pathway. The dication MC-T82+ is antiaromatic, and the backbone is distorted, with a different orientation of the thiophene rings. The tetracation MC-T84+ becomes aromatic again, with a shallow-bowl-shaped geometry. Both the neutral compound and the dication demonstrated open-shell diradical character with a small singlet-triplet energy gap (-2.70 kcal mol-1 for MC-T8 and -3.78 kcal mol-1 for MC-T82+ ), and they are stable owing to effective spin delocalization.
Collapse
Affiliation(s)
- Yong Ni
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Tullimilli Y Gopalakrishna
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Shaofei Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
28
|
Ni Y, Gopalakrishna TY, Wu S, Wu J. A Stable All‐Thiophene‐Based Core‐Modified [38]Octaphyrin Diradicaloid: Conformation and Aromaticity Switch at Different Oxidation States. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong Ni
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | | | - Shaofei Wu
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Jishan Wu
- Department of ChemistryNational University of Singapore 3 Science Drive 3 117543 Singapore Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
29
|
Ooi S, Adinarayana B, Shimizu D, Tanaka T, Osuka A. Stable
meso
–
meso
‐Linked
2NH
‐Corrole Radical Dimers as a Key Intermediate to Corrole Tape. Angew Chem Int Ed Engl 2020; 59:9423-9427. [DOI: 10.1002/anie.202002976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Shota Ooi
- Department of ChemistryGraduate School of ScienceKyoto University, Sakyo-ku Kyoto 606-8502 Japan
| | - B. Adinarayana
- Department of ChemistryGraduate School of ScienceKyoto University, Sakyo-ku Kyoto 606-8502 Japan
| | - Daiki Shimizu
- Department of ChemistryGraduate School of ScienceKyoto University, Sakyo-ku Kyoto 606-8502 Japan
| | - Takayuki Tanaka
- Department of ChemistryGraduate School of ScienceKyoto University, Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of ChemistryGraduate School of ScienceKyoto University, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
30
|
Adinarayana B, Kato K, Shimizu D, Tanaka T, Furukawa K, Osuka A. Cyclophane‐Type Chlorin Dimers from Dynamic Covalent Chemistry of 2,18‐Porphyrinyl Dicyanomethyl Diradicals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- B. Adinarayana
- Department of ChemistryGraduate School of ScienceKyoto University, Sakyo-ku Kyoto 606-8502 Japan
| | - Kenichi Kato
- Department of ChemistryGraduate School of ScienceKyoto University, Sakyo-ku Kyoto 606-8502 Japan
| | - Daiki Shimizu
- Department of ChemistryGraduate School of ScienceKyoto University, Sakyo-ku Kyoto 606-8502 Japan
| | - Takayuki Tanaka
- Department of ChemistryGraduate School of ScienceKyoto University, Sakyo-ku Kyoto 606-8502 Japan
| | - Ko Furukawa
- Center for Coordination of Research FacilitiesInstitute for Research PromotionNiigata University, Nishi-ku Niigata 950-2181 Japan
- Institute for Molecular Science 38 Nishigo-naka, Myodaiji Okazaki 444-8585 Japan
| | - Atsuhiro Osuka
- Department of ChemistryGraduate School of ScienceKyoto University, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
31
|
Adinarayana B, Kato K, Shimizu D, Tanaka T, Furukawa K, Osuka A. Cyclophane-Type Chlorin Dimers from Dynamic Covalent Chemistry of 2,18-Porphyrinyl Dicyanomethyl Diradicals. Angew Chem Int Ed Engl 2020; 59:4320-4323. [PMID: 31916366 DOI: 10.1002/anie.201914480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/19/2019] [Indexed: 11/07/2022]
Abstract
2,18-Bis(dicyanomethyl)-substituted NiII porphyrin 8 and ZnII porphyrin 11 were prepared and subjected to oxidation with PbO2 in CH2 Cl2 at 298 K to give cyclophane-type chlorin dimers (9)2 and (12)2 as a consequence of double recombination of biradicals 9 and 12, respectively. Dimer (9)2 takes a syn-conformation of two distorted NiII chlorins but (12)2 takes an anti-conformation of relatively planar ZnII chlorins. At 298 K, dimer (9)2 is stable and its 1 H NMR spectrum is sharp but becomes broad at high temperature, while the 1 H NMR spectrum of (12)2 is considerably broad even at 298 K but becomes sharper at low temperature. These results indicate that the chlorin dimers dissociate to radical species, but the activation barrier of the dissociation of (12)2 is much less than that of (9)2 . The involvement of diradicals in dynamic covalent chemistry has been suggested by thermal scrambling of hetero dimer (16)2 to give homo dimers (9)2 and (15)2 .
Collapse
Affiliation(s)
- B Adinarayana
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kenichi Kato
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Daiki Shimizu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takayuki Tanaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ko Furukawa
- Center for Coordination of Research Facilities, Institute for Research Promotion, Niigata University, Nishi-ku, Niigata, 950-2181, Japan.,Institute for Molecular Science, 38 Nishigo-naka, Myodaiji, Okazaki, 444-8585, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
32
|
Werr M, Kaifer E, Wadepohl H, Himmel HJ. Tuneable Redox Chemistry and Electrochromism of Persistent Symmetric and Asymmetric Azine Radical Cations. Chemistry 2019; 25:12981-12990. [PMID: 31306523 DOI: 10.1002/chem.201902216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/21/2019] [Indexed: 12/16/2022]
Abstract
Molecular organic radicals have been intensively studied in the last decades, due to their interesting optical, magnetic and redox properties. Here we report the synthesis and characterisation of persistent organic radicals from one-electron oxidation of redox-active azines (RAAs), composed of two guanidinyl or related groups. By connecting two different groups together, asymmetric compounds result. In this way a series of compounds with varying redox potential is obtained that could be oxidised reversibly to the mono- and the dicationic charge states. The accessible redox states were fully determined by chemical redox reactions. The standard Gibbs free energy change for disproportionation of the radical monocation into the dication and the neutral molecule in solution, estimated from cyclovoltammetric measurements, varies between 43 and 71 kJ mol-1 . While the neutral RAAs absorb predominately UV light, the radical monocations display strong absorptions covering almost the entire visible region and extending for some compounds into the NIR region. A detailed analysis of this highly reversible electrochromism is presented, and the fast switching characteristics are demonstrated in an electrochromic test device.
Collapse
Affiliation(s)
- Marco Werr
- Anorganisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Elisabeth Kaifer
- Anorganisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hans-Jörg Himmel
- Anorganisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|