1
|
Kumar Tiwari C, Roy S, Tubul-Sterin T, Baranov M, Leffler N, Li M, Yin P, Neyman A, Weinstock IA. Emergence of Visible-Light Water Oxidation Upon Hexaniobate-Ligand Entrapment of Quantum-Confined Copper-Oxide Cores. Angew Chem Int Ed Engl 2023; 62:e202213762. [PMID: 36580402 DOI: 10.1002/anie.202213762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
The formation of small 1 to 3 nm organic-ligand free metal-oxide nanocrystals (NCs) is essential to utilization of their attractive size-dependent properties in electronic devices and catalysis. We now report that hexaniobate cluster-anions, [Nb6 O19 ]8- , can arrest the growth of metal-oxide NCs and stabilize them as water-soluble complexes. This is exemplified by formation of hexaniobate-complexed 2.4-nm monoclinic-phase CuO NCs (1), whose ca. 350 Cu-atom cores feature quantum-confinement effects that impart an unprecedented ability to catalyze visible-light water oxidation with no added photosensitizers or applied potentials, and at rates exceeding those of hematite NCs. The findings point to polyoxoniobate-ligand entrapment as a potentially general method for harnessing the size-dependent properties of very small semiconductor NCs as the cores of versatile, entirely-inorganic complexes.
Collapse
Affiliation(s)
- Chandan Kumar Tiwari
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Shubasis Roy
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Tal Tubul-Sterin
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Mark Baranov
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Nitai Leffler
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Alevtina Neyman
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ira A Weinstock
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| |
Collapse
|
2
|
Xia K, Yamaguchi K, Suzuki K. Recent Advances in Hybrid Materials of Metal Nanoparticles and Polyoxometalates. Angew Chem Int Ed Engl 2023; 62:e202214506. [PMID: 36282183 DOI: 10.1002/anie.202214506] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 11/25/2022]
Abstract
Polyoxometalates (POMs), anionic metal-oxygen nanoclusters that possess various composition-dependent properties, are widely used to modify the existing properties of metal nanoparticles and to endow them with new ones. Herein, we present an overview of recent advances in hybrid materials that consist of metal nanoparticles and POMs. Following a brief introduction on the inception of this area and its development, representative properties and applications of these materials in various fields such as electrochemistry, photochemistry, and catalysis are introduced. We discuss how the combination of two classic inorganic materials facilitates cooperative and synergistic behavior, and we also give personal perspectives on the future development of this field.
Collapse
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
3
|
Zhang G, Wang F, Tubul T, Baranov M, Leffler N, Neyman A, Poblet JM, Weinstock IA. Complexed Semiconductor Cores Activate Hexaniobate Ligands as Nucleophilic Sites for Solar‐Light Reduction of CO
2
by Water. Angew Chem Int Ed Engl 2022; 61:e202213162. [PMID: 36200676 PMCID: PMC10098893 DOI: 10.1002/anie.202213162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/06/2022]
Abstract
Although pure and functionalized solid-state polyniobates such as layered perovskites and niobate nanosheets are photocatalysts for renewable-energy processes, analogous reactions by molecular polyoxoniobate cluster-anions are nearly absent from the literature. We now report that under simulated solar light, hexaniobate cluster-anion encapsulated 30-NiII -ion "fragments" of surface-protonated cubic-phase-like NiO cores activate the hexaniobate ligands towards CO2 reduction by water. Photoexcitation of the NiO cores promotes charge-transfer reduction of NbV to NbIV , increasing electron density at bridging oxo atoms of Nb-μ-O-Nb linkages that bind and convert CO2 to CO. Photogenerated NiO "holes" simultaneously oxidize water to dioxygen. The findings point to molecular complexation of suitable semiconductor "fragments" as a general method for utilizing electron-dense polyoxoniobate anions as nucleophilic photocatalysts for solar-light driven activation and reduction of small molecules.
Collapse
Affiliation(s)
- Guanyun Zhang
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer Sheva84105Israel
- Key Lab for Colloid and Interface Science of Ministry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Fei Wang
- Departament de Química Física i InorgànicaUniversitat Rovira i Virgili43007TarragonaSpain
| | - Tal Tubul
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer Sheva84105Israel
| | - Mark Baranov
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer Sheva84105Israel
| | - Nitai Leffler
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer Sheva84105Israel
| | - Alevtina Neyman
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer Sheva84105Israel
| | - Josep M. Poblet
- Departament de Química Física i InorgànicaUniversitat Rovira i Virgili43007TarragonaSpain
| | - Ira A. Weinstock
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & TechnologyBen-Gurion University of the NegevBeer Sheva84105Israel
| |
Collapse
|
4
|
Huang S, Ouyang T, Zheng B, Dan M, Liu Z. Enhanced Photoelectrocatalytic Activities for CH
3
OH‐to‐HCHO Conversion on Fe
2
O
3
/MoO
3
: Fe‐O‐Mo Covalency Dominates the Intrinsic Activity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sheng Huang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Bang‐Feng Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Meng Dan
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Zhao‐Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| |
Collapse
|
5
|
Huang S, Ouyang T, Zheng B, Dan M, Liu Z. Enhanced Photoelectrocatalytic Activities for CH
3
OH‐to‐HCHO Conversion on Fe
2
O
3
/MoO
3
: Fe‐O‐Mo Covalency Dominates the Intrinsic Activity. Angew Chem Int Ed Engl 2021; 60:9546-9552. [DOI: 10.1002/anie.202101058] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Sheng Huang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Bang‐Feng Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Meng Dan
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Zhao‐Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| |
Collapse
|
6
|
Li N, Liu J, Dong B, Lan Y. Polyoxometalate‐Based Compounds for Photo‐ and Electrocatalytic Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008054] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ning Li
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Jiang Liu
- College of Chemistry and Materials Science Nanjing Normal University NanJing 210023 China
| | - Bao‐Xia Dong
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Ya‐Qian Lan
- College of Chemistry and Materials Science Nanjing Normal University NanJing 210023 China
| |
Collapse
|
7
|
Li N, Liu J, Dong B, Lan Y. Polyoxometalate‐Based Compounds for Photo‐ and Electrocatalytic Applications. Angew Chem Int Ed Engl 2020; 59:20779-20793. [DOI: 10.1002/anie.202008054] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Ning Li
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Jiang Liu
- College of Chemistry and Materials Science Nanjing Normal University NanJing 210023 China
| | - Bao‐Xia Dong
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Ya‐Qian Lan
- College of Chemistry and Materials Science Nanjing Normal University NanJing 210023 China
| |
Collapse
|
8
|
Chakraborty B, Beltrán‐Suito R, Hlukhyy V, Schmidt J, Menezes PW, Driess M. Crystalline Copper Selenide as a Reliable Non-Noble Electro(pre)catalyst for Overall Water Splitting. CHEMSUSCHEM 2020; 13:3222-3229. [PMID: 32196943 PMCID: PMC7318255 DOI: 10.1002/cssc.202000445] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/18/2020] [Indexed: 05/31/2023]
Abstract
Electrochemical water splitting remains a frontier research topic in the quest to develop artificial photosynthetic systems by using noble metal-free and sustainable catalysts. Herein, a highly crystalline CuSe has been employed as active electrodes for overall water splitting (OWS) in alkaline media. The pure-phase klockmannite CuSe deposited on highly conducting nickel foam (NF) electrodes by electrophoretic deposition (EPD) displayed an overpotential of merely 297 mV for the reaction of oxygen evolution (OER) at a current density of 10 mA cm-2 whereas an overpotential of 162 mV was attained for the hydrogen evolution reaction (HER) at the same current density, superseding the Cu-based as well as the state-of-the-art RuO2 and IrO2 catalysts. The bifunctional behavior of the catalyst has successfully been utilized to fabricate an overall water-splitting device, which exhibits a low cell voltage (1.68 V) with long-term stability. Post-catalytic analyses of the catalyst by ex-situ microscopic, spectroscopic, and analytical methods confirm that under both OER and HER conditions, the crystalline and conductive CuSe behaves as an electro(pre)catalyst forming a highly reactive in situ crystalline Cu(OH)2 overlayer (electro(post)catalyst), which facilitates oxygen (O2 ) evolution, and an amorphous Cu(OH)2 /CuOx active surface for hydrogen (H2 ) evolution. The present study demonstrates a distinct approach to produce highly active copper-based catalysts starting from copper chalcogenides and could be used as a basis to enhance the performance in durable bifunctional overall water splitting.
Collapse
Affiliation(s)
- Biswarup Chakraborty
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| | - Rodrigo Beltrán‐Suito
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| | - Viktor Hlukhyy
- Department ChemieTechnische Universität MünchenLichtenbergstraße 485747GarchingGermany
| | - Johannes Schmidt
- Department of Chemistry: Functional MaterialsTechnische Universität BerlinHardenbergstraße 4010623BerlinGermany
| | - Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| |
Collapse
|
9
|
Cherevan AS, Nandan SP, Roger I, Liu R, Streb C, Eder D. Polyoxometalates on Functional Substrates: Concepts, Synergies, and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903511. [PMID: 32328431 PMCID: PMC7175252 DOI: 10.1002/advs.201903511] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/28/2020] [Indexed: 05/25/2023]
Abstract
Polyoxometalates (POMs) are molecular metal oxide clusters that feature a broad range of structures and functionalities, making them one of the most versatile classes of inorganic molecular materials. They have attracted widespread attention in homogeneous catalysis. Due to the challenges associated with their aggregation, precipitation, and degradation under operational conditions and to extend their scope of applications, various strategies of depositing POMs on heterogeneous substrates have been developed. Recent ground-breaking developments in the materials chemistry of supported POM composites are summarized and links between molecular-level understanding of POM-support interactions and macroscopic effects including new or optimized reactivities, improved stability, and novel function are established. Current limitations and future challenges in studying these complex composite materials are highlighted, and cutting-edge experimental and theoretical methods that will lead to an improved understanding of synergisms between POM and support material from the molecular through to the nano- and micrometer level are discussed. Future development in this fast-moving field is explored and emerging fields of research in POM heterogenization are identified.
Collapse
Affiliation(s)
- Alexey S. Cherevan
- Institute of Materials ChemistryVienna University of TechnologyGetreidemarkt 9/BC/02Vienna1060Austria
| | - Sreejith P. Nandan
- Institute of Materials ChemistryVienna University of TechnologyGetreidemarkt 9/BC/02Vienna1060Austria
| | - Isolda Roger
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 11Ulm89081Germany
| | - Rongji Liu
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 11Ulm89081Germany
- CAS Key Laboratory of Green Process and EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
| | - Carsten Streb
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 11Ulm89081Germany
- Helmholtz‐Institute UlmHelmholtzstr. 11Ulm89081Germany
| | - Dominik Eder
- Institute of Materials ChemistryVienna University of TechnologyGetreidemarkt 9/BC/02Vienna1060Austria
| |
Collapse
|
10
|
Hu J, Li M, Chen K, Yin P. The Co‐Assembly of Polyoxometalates and Quantum Dots for Hybrid Core‐Shell Nanoparticles. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jie Hu
- South China Advanced Institute for Soft Matter Science and Technology South China University of Technology 510640 Guangzhou P. R. China
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology South China University of Technology 510640 Guangzhou P. R. China
| | - Kun Chen
- South China Advanced Institute for Soft Matter Science and Technology South China University of Technology 510640 Guangzhou P. R. China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology South China University of Technology 510640 Guangzhou P. R. China
| |
Collapse
|