1
|
Kurian ASN, Mazumder MI, Gurukandure A, Easley CJ. An electrochemical proximity assay (ECPA) for antibody detection incorporating flexible spacers for improved performance. Anal Bioanal Chem 2024; 416:6529-6539. [PMID: 39367148 PMCID: PMC11541272 DOI: 10.1007/s00216-024-05546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
A clever approach for biosensing is to leverage the concept of the proximity effect, where analyte binding to probes can be coupled to a second, controlled binding event such as short DNA strands. This analyte-dependent effect has been exploited in various sensors with optical or electrochemical readouts. Electrochemical proximity assays (ECPA) are more amenable to miniaturization and adaptation to the point-of-care, yet ECPA has been generally targeted toward protein sensing with antibody-oligonucleotide probes. Antibodies themselves are also important as biomarkers, since they are produced in bodily fluids in response to various diseases or infections, often in low amounts. In this work, by using antigen-DNA conjugates, we targeted an ECPA method for antibody sensing and showed that the assay performance can be greatly enhanced using flexible spacers in the DNA conjugates. After adding flexible polyethylene glycol (PEG) spacers at two distinct positions, the spacers ultimately increased the antibody-dependent current by a factor of 4.0 without significant background increases, similar to our recent work using thermofluorimetric analysis (TFA). The optimized ECPA was applied to anti-digoxigenin antibody quantification at concentrations ranging over two orders of magnitude, from the limit of detection of 300 pM up to 50 nM. The assay was functional in 90% human serum, where increased ionic strength was used to counteract double-layer repulsion effects at the electrode. This flexible-probe ECPA methodology should be useful for sensing other antibodies in the future with high sensitivity, and the mechanism for signal improvement with probe flexibility may be applicable to other DNA-based electrochemical sensor platforms.
Collapse
Affiliation(s)
- Amanda S N Kurian
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | | | - Asanka Gurukandure
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Christopher J Easley
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
2
|
Li Y, Luo L, Kong Y, Li Y, Wang Q, Wang M, Li Y, Davenport A, Li B. Recent advances in molecularly imprinted polymer-based electrochemical sensors. Biosens Bioelectron 2024; 249:116018. [PMID: 38232451 DOI: 10.1016/j.bios.2024.116018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Molecularly imprinted polymers (MIPs) are the equivalent of natural antibodies and have been widely used as synthetic receptors for the detection of disease biomarkers. Benefiting from their excellent chemical and physical stability, low-cost, relative ease of production, reusability, and high selectivity, MIP-based electrochemical sensors have attracted great interest in disease diagnosis and demonstrated superiority over other biosensing techniques. Here we compare various types of MIP-based electrochemical sensors with different working principles. We then evaluate the state-of-the-art achievements of the MIP-based electrochemical sensors for the detection of different biomarkers, including nucleic acids, proteins, saccharides, lipids, and other small molecules. The limitations, which prevent its successful translation into practical clinical settings, are outlined together with the potential solutions. At the end, we share our vision of the evolution of MIP-based electrochemical sensors with an outlook on the future of this promising biosensing technology.
Collapse
Affiliation(s)
- Yixuan Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Liuxiong Luo
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Yingqi Kong
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Yujia Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Quansheng Wang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, 150036, China
| | - Mingqing Wang
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Ying Li
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, WC1N 3BG, UK
| | - Andrew Davenport
- Department of Renal Medicine, University College London, London, NW3 2PF, UK
| | - Bing Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
| |
Collapse
|
3
|
Alissa M, Hjazi A. Utilising biosensor-based approaches for identifying neurotropic viruses. Rev Med Virol 2024; 34:e2513. [PMID: 38282404 DOI: 10.1002/rmv.2513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Neurotropic viruses, with their ability to invade the central nervous system, present a significant public health challenge, causing a spectrum of neurological diseases. Clinical manifestations of neurotropic viral infections vary widely, from mild to life-threatening conditions, such as HSV-induced encephalitis or poliovirus-induced poliomyelitis. Traditional diagnostic methods, including polymerase chain reaction, serological assays, and imaging techniques, though valuable, have limitations. To address these challenges, biosensor-based methods have emerged as a promising approach. These methods offer advantages such as rapid results, high sensitivity, specificity, and potential for point-of-care applications. By targeting specific biomarkers or genetic material, biosensors utilise technologies like surface plasmon resonance and microarrays, providing a direct and efficient means of diagnosing neurotropic infections. This review explores the evolving landscape of biosensor-based methods, highlighting their potential to enhance the diagnostic toolkit for neurotropic viruses.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz, Al-Kharj, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz, Al-Kharj, Saudi Arabia
| |
Collapse
|
4
|
Ma T, Ye J, Tang Y, Yuan H, Wen D. Superhydrophilicity Regulation of Carbon Nanotubes Boosting Electrochemical Biosensing for Real-time Monitoring of H 2O 2 Released from Living Cells. Anal Chem 2023; 95:17851-17859. [PMID: 37988254 DOI: 10.1021/acs.analchem.3c03981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Dynamic and accurate monitoring of cell-released electroactive signaling biomolecules through electrochemical techniques has drawn significant research interest for clinical applications. Herein, the functionalized carbon nanotubes (f-CNTs) featuring with gradient surface wettability from hydrophobicity to hydrophilicity, and even to superhydrophilicity, were regulated by thermolysis of an ionic liquid for exploration of the dependence of surface wettability on electrochemical biosensing performance to a cell secretion model of hydrogen peroxide (H2O2). The superhydrophilic f-CNTs demonstrated boosting electrocatalytic reduction activity for H2O2. Additionally, the molecular dynamic (MD) simulations confirmed the more cumulative number density distribution of H2O2 molecules closer to the superhydrophilic surface (0.20 vs 0.37 nm), which would provide a faster diffusional channel compared with the hydrophobic surface. Thereafter, a superhydrophilic biosensing platform with a lower detectable limit reduced by 200 times (0.5 vs 100 μM) and a higher sensitivity over 56 times (0.112 vs 0.002 μA μM cm-2) than that of the hydrophobic one was achieved. Given its excellent cytocompatibility, the superhydrophilic f-CNTs was successfully applied to determine H2O2 released from HeLa cells which were maintained alive after a 30 min real-time monitoring test. The surface hydrophilicity regulation of electrode materials presents a facile approach for real-time monitoring of H2O2 released from living cells and would provide new insights for other electroactive signaling targets at the cellular level.
Collapse
Affiliation(s)
- Tuotuo Ma
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, P. R. China
| | - Jianqi Ye
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, P. R. China
| | - Yarui Tang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, P. R. China
| | - Hongxing Yuan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, P. R. China
| | - Dan Wen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, P. R. China
| |
Collapse
|
5
|
Li T, Cheng N. Sensitive and Portable Signal Readout Strategies Boost Point-of-Care CRISPR/Cas12a Biosensors. ACS Sens 2023; 8:3988-4007. [PMID: 37870387 DOI: 10.1021/acssensors.3c01338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Point-of-care (POC) detection is getting more and more attention in many fields due to its accuracy and on-site test property. The CRISPR/Cas12a system is endowed with excellent sensitivity, target identification specificity, and signal amplification ability in biosensing because of its unique trans-cleavage ability. As a result, a lot of research has been made to develop CRISPR/Cas12a-based biosensors. In this review, we focused on signal readout strategies and summarized recent sensitivity-improving strategies in fluorescence, colorimetric, and electrochemical signaling. Then we introduced novel portability-improving strategies based on lateral flow assays (LFAs), microfluidic chips, simplified instruments, and one-pot design. In the end, we also provide our outlook for the future development of CRISPR/Cas12a biosensors.
Collapse
Affiliation(s)
- Tong Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
6
|
Yang Z, Mao S, Wang L, Fu S, Dong Y, Jaffrezic-Renault N, Guo Z. CRISPR/Cas and Argonaute-Based Biosensors for Pathogen Detection. ACS Sens 2023; 8:3623-3642. [PMID: 37819690 DOI: 10.1021/acssensors.3c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Over the past few decades, pathogens have posed a threat to human security, and rapid identification of pathogens should be one of the ideal methods to prevent major public health security outbreaks. Therefore, there is an urgent need for highly sensitive and specific approaches to identify and quantify pathogens. Clustered Regularly Interspaced Short Palindromic Repeats CRISPR/Cas systems and Argonaute (Ago) belong to the Microbial Defense Systems (MDS). The guided, programmable, and targeted activation of nucleases by both of them is leading the way to a new generation of pathogens detection. We compare these two nucleases in terms of similarities and differences. In addition, we discuss future challenges and prospects for the development of the CRISPR/Cas systems and Argonaute (Ago) biosensors, especially electrochemical biosensors. This review is expected to afford researchers entering this multidisciplinary field useful guidance and to provide inspiration for the development of more innovative electrochemical biosensors for pathogens detection.
Collapse
Affiliation(s)
- Zhiruo Yang
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Siying Mao
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Lu Wang
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Sinan Fu
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Yanming Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne 69100, France
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| |
Collapse
|
7
|
Manoharan V, Rodrigues R, Sadati S, Swann MJ, Freeman N, Du B, Yildirim E, Tamer U, Arvanitis TN, Isakov D, Asadipour A, Charmet J. Platform-agnostic electrochemical sensing app and companion potentiostat. Analyst 2023; 148:4857-4868. [PMID: 37624366 PMCID: PMC10518900 DOI: 10.1039/d2an01350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/11/2023] [Indexed: 08/26/2023]
Abstract
Electrochemical sensing is ubiquitous in a number of fields ranging from biosensing, to environmental monitoring through to food safety and battery or corrosion characterisation. Whereas conventional potentiostats are ideal to develop assays in laboratory settings, they are in general, not well-suited for field work due to their size and power requirements. To address this need, a number of portable battery-operated potentiostats have been proposed over the years. However, most open source solutions do not take full advantage of integrated circuit (IC) potentiostats, a rapidly evolving field. This is partly due to the constraining requirements inherent to the development of dedicated interfaces, such as apps, to address and control a set of common electrochemical sensing parameters. Here we propose the PocketEC, a universal app that has all the functionalities to interface with potentiostat ICs through a user defined property file. The versatility of PocketEC, developed with an assay developer mindset, was demonstrated by interfacing it, via Bluetooth, to the ADuCM355 evaluation board, the open-source DStat potentiostat and the Voyager board, a custom-built, small footprint potentiostat based around the LMP91000 chip. The Voyager board is presented here for the first time. Data obtained using a standard redox probe, Ferrocene Carboxylic Acid (FCA) and a silver ion assay using anodic stripping multi-step amperometry were in good agreement with analogous measurements using a bench top potentiostat. Combined with its Voyager board companion, the PocketEC app can be used directly for a number of wearable or portable electrochemical sensing applications. Importantly, the versatility of the app makes it a candidate of choice for the development of future portable potentiostats. Finally, the app is available to download on the Google Play store and the source codes and design files for the PocketEC app and the Voyager board are shared via Creative Commons license (CC BY-NC 3.0) to promote the development of novel portable or wearable applications based on electrochemical sensing.
Collapse
Affiliation(s)
| | - Rui Rodrigues
- Institute of Digital Healthcare, WMG, University of Warwick, Coventry, CV4 7AL, UK.
| | - Sara Sadati
- Institute of Digital Healthcare, WMG, University of Warwick, Coventry, CV4 7AL, UK.
| | - Marcus J Swann
- 5D Health Protection Group Ltd, Accelerator Building, 1 Daulby Street, Liverpool L7 8XZ, UK
| | - Neville Freeman
- 5D Health Protection Group Ltd, Accelerator Building, 1 Daulby Street, Liverpool L7 8XZ, UK
| | - Bowen Du
- Institute of Digital Healthcare, WMG, University of Warwick, Coventry, CV4 7AL, UK.
| | - Ender Yildirim
- Middle East Technical University, Mechanical Engineering Department, 06800, Ankara, Turkey
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, 06330, Turkey
| | - Theodoros N Arvanitis
- Institute of Digital Healthcare, WMG, University of Warwick, Coventry, CV4 7AL, UK.
- School of Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Dmitry Isakov
- Institute of Digital Healthcare, WMG, University of Warwick, Coventry, CV4 7AL, UK.
| | - Ali Asadipour
- Computer Science Research Centre, Royal College of Art, London, SW7 2EU, UK.
| | - Jérôme Charmet
- Institute of Digital Healthcare, WMG, University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- HE-Arc Ingénierie, HES-SO University of Applied Sciences and Art of Western Switzerland, 2000 Neuchâtel, Switzerland
| |
Collapse
|
8
|
Chang Y, Liu G, Li S, Liu L, Song Q. Biorecognition element-free electrochemical detection of recombinant glycoproteins using metal-organic frameworks as signal tags. Anal Chim Acta 2023; 1273:341540. [PMID: 37423655 DOI: 10.1016/j.aca.2023.341540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023]
Abstract
Accurate and sensitive determination of recombinant glycoproteins is in great demand for the treatment of anemia-induced chronic kidney disease and the illegal use of doping agents in sports. In this study, an antibody and enzyme-free electrochemical method for the detection of recombinant glycoproteins was proposed via the sequential chemical recognition of hexahistidine (His6) tag and glycan residue on the target protein under the cooperation interaction of nitrilotriacetic acid (NTA)-Ni2+complex and boronic acid, respectively. Specifically, NTA-Ni2+ complex-modified magnetic beads (MBs-NTA-Ni2+) are employed to selectively capture the recombinant glycoprotein through the coordination interaction between His6 tag and NTA-Ni2+ complex. Then, boronic acid-modified Cu-based metal-organic frameworks (Cu-MOFs) were recruited by glycans on the glycoprotein via the formation of reversible boronate ester bonds. MOFs with abundant Cu2+ ions acted as efficient electroactive labels to directly produce amplified electrochemical signals. By using recombinant human erythropoietin as a model analyte, this method showed a wide linear detection range from 0.01 to 50 ng/mL and a low detection limit of 5.3 pg/mL. With the benefits from the simple operation and low cost, the stepwise chemical recognition-based method shows great promise in the determination of recombinant glycoproteins in the fields of biopharmaceutical research, anti-doping analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Yong Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China; College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuang Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China.
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
9
|
Cui J, Sun R, Zhao X, Zhao M, Zhang X, Li Y, Wang L, Shi C, Ma C. A homogeneous hybridization magnetic biosensor based on electric field assistance for ultrafast nucleic acid detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37379082 DOI: 10.1039/d3ay00548h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Electrochemical biosensing is a sensitive strategy widely used in the field of nucleic acid detection. However, electrochemical biosensors generally involve time-consuming and labor-intensive probe immobilization processes. In this study, an electrochemical DNA biosensor based on homogeneous hybridization in solution was designed for nucleic acid detection without probe immobilization, which is different from most biosensors. The capture probe, detection probe, and target DNA were hybridized rapidly under an electric field to form a "sandwich" structure within 90 s, and the "sandwich" hybrid could be specifically coupled to streptavidin-modified magnetic beads within 5 min. Finally, the magnetic beads were enriched by using polypyrrole (PPy)/carbon nanotube (CNT)-modified magnetic electrodes and the signal was detected by differential pulse voltammetry (DPV). The magnetic biosensor constructed in this study could detect targets over a good linear dynamic range spanning 100 pM to 100 nM in 400 s, while those involving conventional hybridization methods always take 2 h or more. Because of the specific binding of streptavidin and biotin, this strategy showed high specificity. Taken together, the homogenous hybridization magnetic biosensor constructed with electric field assistance presents a potential diagnostic method for rapid DNA detection and provides a new idea for rapid nucleic acid detection in clinical practice.
Collapse
Affiliation(s)
- Jinling Cui
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
- College of Chemistry and Molecular Engineering, State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ritong Sun
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xiaoli Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Mingyuan Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xiaojun Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Lei Wang
- College of Chemistry and Molecular Engineering, State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, The Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
10
|
Asif M, Wang Z, Aziz A, Ashraf G, Ali J, Iftikhar T, Xiao F, Sun Y. Hybridizing Ti 3C 2T x Layers with Layered Double Hydroxide Nanosheets at the Molecular Level: A Smart Electrode Material for H 2O 2 Monitoring in Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37368492 DOI: 10.1021/acsami.3c02004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Vertically stacked artificial 2D superlattice hybrids fabricated through molecular-level hybridization in a controlled fashion play a vital role in scientific and technological fields, but developing an alternate assembly of 2D atomic layers with strong electrostatic interactions could be much more challenging. In this study, we have constructed an alternately stacked self-assembled superlattice composite through integration of CuMgAl layered double hydroxide (LDH) nanosheets having positive charge with negatively charged Ti3C2Tx layers using well-controlled liquid-phase co-feeding protocol and electrostatic attraction and investigated its electrochemical performance in sensing early cancer biomarkers, i.e., hydrogen peroxide (H2O2). The molecular-level CuMgAl LDH/Ti3C2Tx superlattice self-assembly possesses superb conductivity and electrocatalytic properties, which are significant for obtaining a high electrochemical sensing aptitude. Electron penetration in Ti3C2Tx layers and rapid ion diffusion along 2D galleries have shortened the diffusion path and enhanced the charge transferring efficacy. The electrode modified with the CuMgAl LDH/Ti3C2Tx superlattice has demonstrated admirable electrocatalytic abilities in H2O2 detection with a wide linear concentration range and low real-time limit of detection (LOD) of 0.1 nM with signal/noise ratio (S/N) = 3. Practically, an electrochemical sensing podium based on the CuMgAl LDH/Ti3C2Tx superlattice has been effectively applied in real-time in vitro tracking of H2O2 effluxes excreted from different live cancer cells and normal cells after being encouraged by stimulation. The results exhibit that molecular-level heteroassembly holds great potential in electrochemical sensors to detect promising biomarkers.
Collapse
Affiliation(s)
- Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Zhanpeng Wang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ayesha Aziz
- School of Biomedical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ghazala Ashraf
- School of Biomedical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jawad Ali
- School of Environment and Biological Engineering, Wuhan Technology and Business University, Hongshan District, Wuhan 430065, China
| | - Tayyaba Iftikhar
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fei Xiao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yimin Sun
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
11
|
Lv J, Chang S, Chen HY, Zhou XY, Wang XY, Chen ZC, Chen BB, Qian RC, Li DW. A multi-channel responsive AuNP@COF core-shell nanoprobe for simultaneous subcellular profiling of multiple cancer biomarkers. Biosens Bioelectron 2023; 234:115325. [PMID: 37148801 DOI: 10.1016/j.bios.2023.115325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 05/08/2023]
Abstract
The abnormal change in the expression profile of multiple cancer biomarkers is closely related to tumor progression and therapeutic effect. Due to their low abundance in living cells and the limitations of existing imaging techniques, simultaneous imaging of multiple cancer biomarkers has remained a significant challenge. Here, we proposed a multi-modal imaging strategy to detect the correlated expression of multiple cancer biomarkers, MUC1, microRNA-21 (miRNA-21) and reactive oxygen (ROS) in living cells, based on a porous covalent organic framework (COF) wrapped gold nanoparticles (AuNPs) core-shell nanoprobe. The nanoprobe is functionalized with Cy5-labeled MUC1 aptamer, a ROS-responsive molecule (2-MHQ), and a miRNA-21-response hairpin DNA tagged by FITC as the reporters for different biomarkers. The target-specific recognition can induce the orthogonal molecular change of these reporters, producing fluorescence and Raman signals for imaging the expression profiles of membrane MUC1 (red fluorescence channel), intracellular miRNA-21 (green fluorescence channel), and intracellular ROS (SERS channel). We further demonstrate the capability of the cooperative expression of these biomarkers, along with the activation of NF-κB pathway. Our research provides a robust platform for imaging multiple cancer biomarkers, with broad potential applications in cancer clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Jian Lv
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology, Dynamic Chemistry School of Chemistry, Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shuai Chang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology, Dynamic Chemistry School of Chemistry, Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Hua-Ying Chen
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology, Dynamic Chemistry School of Chemistry, Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xin-Yue Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology, Dynamic Chemistry School of Chemistry, Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiao-Yuan Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology, Dynamic Chemistry School of Chemistry, Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Zhen-Chi Chen
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology, Dynamic Chemistry School of Chemistry, Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Bin-Bin Chen
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology, Dynamic Chemistry School of Chemistry, Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology, Dynamic Chemistry School of Chemistry, Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology, Dynamic Chemistry School of Chemistry, Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
12
|
Sanko V, Kuralay F. Label-Free Electrochemical Biosensor Platforms for Cancer Diagnosis: Recent Achievements and Challenges. BIOSENSORS 2023; 13:bios13030333. [PMID: 36979545 PMCID: PMC10046346 DOI: 10.3390/bios13030333] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 05/31/2023]
Abstract
With its fatal effects, cancer is still one of the most important diseases of today's world. The underlying fact behind this scenario is most probably due to its late diagnosis. That is why the necessity for the detection of different cancer types is obvious. Cancer studies including cancer diagnosis and therapy have been one of the most laborious tasks. Since its early detection significantly affects the following therapy steps, cancer diagnosis is very important. Despite researchers' best efforts, the accurate and rapid diagnosis of cancer is still challenging and difficult to investigate. It is known that electrochemical techniques have been successfully adapted into the cancer diagnosis field. Electrochemical sensor platforms that are brought together with the excellent selectivity of biosensing elements, such as nucleic acids, aptamers or antibodies, have put forth very successful outputs. One of the remarkable achievements of these biomolecule-attached sensors is their lack of need for additional labeling steps, which bring extra burdens such as interference effects or demanding modification protocols. In this review, we aim to outline label-free cancer diagnosis platforms that use electrochemical methods to acquire signals. The classification of the sensing platforms is generally presented according to their recognition element, and the most recent achievements by using these attractive sensing substrates are described in detail. In addition, the current challenges are discussed.
Collapse
Affiliation(s)
- Vildan Sanko
- Department of Chemistry, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Filiz Kuralay
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
13
|
Bracaglia S, Ranallo S, Ricci F. Electrochemical Cell-Free Biosensors for Antibody Detection. Angew Chem Int Ed Engl 2023; 62:e202216512. [PMID: 36533529 DOI: 10.1002/anie.202216512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
We report here the development of an electrochemical cell-free biosensor for antibody detection directly in complex sample matrices with high sensitivity and specificity that is particularly suitable for point-of-care applications. The approach is based on the use of programmable antigen-conjugated gene circuits that, upon recognition of a specific target antibody, trigger the cell-free transcription of an RNA sequence that can be consequently detected using a redox-modified probe strand immobilized to a disposable electrode. The platform couples the features of high sensitivity and specificity of cell-free systems and the strength of cost-effectiveness and possible miniaturization provided by the electrochemical detection. We demonstrate the sensitive, specific, selective, and multiplexed detection of three different antibodies, including the clinically-relevant Anti-HA antibody.
Collapse
Affiliation(s)
- Sara Bracaglia
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Simona Ranallo
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
14
|
Oh C, Park B, Sundaresan V, Schaefer JL, Bohn PW. Closed Bipolar Electrode-Enabled Electrochromic Sensing of Multiple Metabolites in Whole Blood. ACS Sens 2023; 8:270-279. [PMID: 36547518 DOI: 10.1021/acssensors.2c02140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report a closed bipolar electrode (CBE)-based sensing platform for the detection of diagnostic metabolites in undiluted whole human blood. The sensor is enabled by electrode chemistry based on: (1) a mixed layer of blood-compatible adsorption-resistant phosphorylcholine (PPC) and phenylbutyric acid (PBA), (2) ferrocene (Fc) redox mediators, and (3) immobilized redox-active enzymes. This scheme is designed to overcome nonspecific protein adsorption and amplify sensing currents in whole human fluids. The scheme also incorporates a diffusing mediator to increase electronic communication between the immobilized redox enzyme and the working electrode. The use of both bound and freely diffusing mediators is synergistic in producing the electrochemical response. The sensor is realized by linking the analyte cell, containing the specific electrode surface architecture, through a CBE to a reporter cell containing the electrochromic reporter, methyl viologen (MV). The colorless-to-purple color change accompanying the 1e- reduction of MV2+ is captured using a smartphone camera. Subsequent red-green-blue analysis is performed on the acquired images to determine cholesterol, glucose, and lactate concentrations in whole blood. The CBE blood metabolite sensor produces a linear color change at clinically relevant concentration ranges for all metabolites with good reproducibility (∼5% or better) and with limits of detection of 79 μM for cholesterol, 59 μM for glucose, and 86 μM for lactate. Finally, metabolite concentration measurements from the CBE blood metabolite sensor are compared with results from commercially available FDA-approved blood cholesterol, glucose, and lactate meters, with an average difference of ∼3.5% across all three metabolites in the ranges studied.
Collapse
Affiliation(s)
- Christiana Oh
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Bumjun Park
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Vignesh Sundaresan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Jennifer L Schaefer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Paul W Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| |
Collapse
|
15
|
Koo KM, Kim CD, Ju FN, Kim H, Kim CH, Kim TH. Recent Advances in Electrochemical Biosensors for Monitoring Animal Cell Function and Viability. BIOSENSORS 2022; 12:bios12121162. [PMID: 36551129 PMCID: PMC9775431 DOI: 10.3390/bios12121162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 05/28/2023]
Abstract
Redox reactions in live cells are generated by involving various redox biomolecules for maintaining cell viability and functions. These qualities have been exploited in the development of clinical monitoring, diagnostic approaches, and numerous types of biosensors. Particularly, electrochemical biosensor-based live-cell detection technologies, such as electric cell-substrate impedance (ECIS), field-effect transistors (FETs), and potentiometric-based biosensors, are used for the electrochemical-based sensing of extracellular changes, genetic alterations, and redox reactions. In addition to the electrochemical biosensors for live-cell detection, cancer and stem cells may be immobilized on an electrode surface and evaluated electrochemically. Various nanomaterials and cell-friendly ligands are used to enhance the sensitivity of electrochemical biosensors. Here, we discuss recent advances in the use of electrochemical sensors for determining cell viability and function, which are essential for the practical application of these sensors as tools for pharmaceutical analysis and toxicity testing. We believe that this review will motivate researchers to enhance their efforts devoted to accelerating the development of electrochemical biosensors for future applications in the pharmaceutical industry and stem cell therapeutics.
Collapse
|
16
|
Tayyab M, Xie P, Sami MA, Raji H, Lin Z, Meng Z, Mahmoodi SR, Javanmard M. A portable analog front-end system for label-free sensing of proteins using nanowell array impedance sensors. Sci Rep 2022; 12:20119. [PMID: 36418852 PMCID: PMC9684124 DOI: 10.1038/s41598-022-23286-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
Proteins are useful biomarkers for a wide range of applications such as cancer detection, discovery of vaccines, and determining exposure to viruses and pathogens. Here, we present a low-noise front-end analog circuit interface towards development of a portable readout system for the label-free sensing of proteins using Nanowell array impedance sensing with a form factor of approximately 35cm2. The electronic interface consists of a low-noise lock-in amplifier enabling reliable detection of changes in impedance as low as 0.1% and thus detection of proteins down to the picoMolar level. The sensitivity of our system is comparable to that of a commercial bench-top impedance spectroscope when using the same sensors. The aim of this work is to demonstrate the potential of using impedance sensing as a portable, low-cost, and reliable method of detecting proteins, thus inching us closer to a Point-of-Care (POC) personalized health monitoring system. We have demonstrated the utility of our system to detect antibodies at various concentrations and protein (45 pM IL-6) in PBS, however, our system has the capability to be used for assaying various biomarkers including proteins, cytokines, virus molecules and antibodies in a portable setting.
Collapse
Affiliation(s)
- Muhammad Tayyab
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Pengfei Xie
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Muhammad Ahsan Sami
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Hassan Raji
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Zhongtian Lin
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Zhuolun Meng
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Seyed Reza Mahmoodi
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, 08901, USA.
| |
Collapse
|
17
|
Gao H, Shang Z, Chan SY, Ma D. Recent advances in the use of the CRISPR-Cas system for the detection of infectious pathogens. J Zhejiang Univ Sci B 2022; 23:881-898. [PMID: 36379609 PMCID: PMC9676091 DOI: 10.1631/jzus.b2200068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infectious diseases cause great economic loss and individual and even social anguish. Existing detection methods lack sensitivity and specificity, have a poor turnaround time, and are dependent on expensive equipment. In recent years, the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system has been widely used in the detection of pathogens that cause infectious diseases owing to its high specificity, sensitivity, and speed, and good accessibility. In this review, we discuss the discovery and development of the CRISPR-Cas system, summarize related analysis and interpretation methods, and discuss the existing applications of CRISPR-based detection of infectious pathogens using Cas proteins. We conclude the challenges and prospects of the CRISPR-Cas system in the detection of pathogens.
Collapse
Affiliation(s)
- Hongdan Gao
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Zifang Shang
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518026, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Dongli Ma
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518026, China.
| |
Collapse
|
18
|
Alsalameh S, Alnajjar K, Makhzoum T, Al Eman N, Shakir I, Mir TA, Alkattan K, Chinnappan R, Yaqinuddin A. Advances in Biosensing Technologies for Diagnosis of COVID-19. BIOSENSORS 2022; 12:898. [PMID: 36291035 PMCID: PMC9599206 DOI: 10.3390/bios12100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic has severely impacted normal human life worldwide. Due to its rapid community spread and high mortality statistics, the development of prompt diagnostic tests for a massive number of samples is essential. Currently used traditional methods are often expensive, time-consuming, laboratory-based, and unable to handle a large number of specimens in resource-limited settings. Because of its high contagiousness, efficient identification of SARS-CoV-2 carriers is crucial. As the advantages of adopting biosensors for efficient diagnosis of COVID-19 increase, this narrative review summarizes the recent advances and the respective reasons to consider applying biosensors. Biosensors are the most sensitive, specific, rapid, user-friendly tools having the potential to deliver point-of-care diagnostics beyond traditional standards. This review provides a brief introduction to conventional methods used for COVID-19 diagnosis and summarizes their advantages and disadvantages. It also discusses the pathogenesis of COVID-19, potential diagnostic biomarkers, and rapid diagnosis using biosensor technology. The current advancements in biosensing technologies, from academic research to commercial achievements, have been emphasized in recent publications. We covered a wide range of topics, including biomarker detection, viral genomes, viral proteins, immune responses to infection, and other potential proinflammatory biomolecules. Major challenges and prospects for future application in point-of-care settings are also highlighted.
Collapse
Affiliation(s)
| | - Khalid Alnajjar
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Noor Al Eman
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ismail Shakir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Tanveer Ahmad Mir
- Laboratory of Tissue/Organ Bioengineering and BioMEMS, Organ Transplant Centre of Excellence, Transplant Research and Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
19
|
Zhang X, Shi Y, Chen G, Wu D, Wu Y, Li G. CRISPR/Cas Systems-Inspired Nano/Biosensors for Detecting Infectious Viruses and Pathogenic Bacteria. SMALL METHODS 2022; 6:e2200794. [PMID: 36114150 DOI: 10.1002/smtd.202200794] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Infectious pathogens cause severe human illnesses and great deaths per year worldwide. Rapid, sensitive, and accurate detection of pathogens is of great importance for preventing infectious diseases caused by pathogens and optimizing medical healthcare systems. Inspired by a microbial defense system (i.e., CRISPR/ CRISPR-associated proteins (Cas) system, an adaptive immune system for protecting microorganisms from being attacked by invading species), a great many new biosensors have been successfully developed and widely applied in the detection of infectious viruses and pathogenic bacteria. Moreover, advanced nanotechnologies have also been integrated into these biosensors to improve their detection stability, sensitivity, and accuracy. In this review, the recent advance in CRISPR/Cas systems-based nano/biosensors and their applications in the detection of infectious viruses and pathogenic bacteria are comprehensively reviewed. First of all, the categories and working principles of CRISPR/Cas systems for establishing the nano/biosensors are simply introduced. Then, the design and construction of CRISPR/Cas systems-based nano/biosensors are comprehensively discussed. In the end, attentions are focused on the applications of CRISPR/Cas systems-based nano/biosensors in the detection of infectious viruses and pathogenic bacteria. Impressively, the remaining opportunities and challenges for the further design and development of CRISPR/Cas system-based nano/biosensors and their promising applications are proposed.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yiheng Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Di Wu
- Institute for Global Food Security, Queen's University Belfast, Belfast, BT95DL, UK
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, P. R. China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
20
|
Wu C, Chen Z, Li C, Hao Y, Tang Y, Yuan Y, Chai L, Fan T, Yu J, Ma X, Al-Hartomy OA, Wageh S, Al-Sehemi AG, Luo Z, He Y, Li J, Xie Z, Zhang H. CRISPR-Cas12a-Empowered Electrochemical Biosensor for Rapid and Ultrasensitive Detection of SARS-CoV-2 Delta Variant. NANO-MICRO LETTERS 2022; 14:159. [PMID: 35925472 PMCID: PMC9352833 DOI: 10.1007/s40820-022-00888-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 05/11/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The gold standard method for the diagnosis of SARS-CoV-2 depends on quantitative reverse transcription-polymerase chain reaction till now, which is time-consuming and requires expensive instrumentation, and the confirmation of variants relies on further sequencing techniques. Herein, we first proposed a robust technique-methodology of electrochemical CRISPR sensing with the advantages of rapid, highly sensitivity and specificity for the detection of SARS-CoV-2 variant. To enhance the sensing capability, gold electrodes are uniformly decorated with electro-deposited gold nanoparticles. Using DNA template identical to SARS-CoV-2 Delta spike gene sequence as model, our biosensor exhibits excellent analytical detection limit (50 fM) and high linearity (R2 = 0.987) over six orders of magnitude dynamic range from 100 fM to 10 nM without any nucleic-acid-amplification assays. The detection can be completed within 1 h with high stability and specificity which benefits from the CRISPR-Cas system. Furthermore, based on the wireless micro-electrochemical platform, the proposed biosensor reveals promising application ability in point-of-care testing.
Collapse
Affiliation(s)
- Chenshuo Wu
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Zhi Chen
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Hospital of Guangzhou Medical University, Qingyuan city People's Hospital, Qingyuan, 511518, People's Republic of China.
| | - Chaozhou Li
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Yabin Hao
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Shenzhen Han's Tech Limited Company, Shenzhen, 518000, People's Republic of China
| | - Yuxuan Tang
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Hospital of Guangzhou Medical University, Qingyuan city People's Hospital, Qingyuan, 511518, People's Republic of China
| | - Yuxuan Yuan
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Luxiao Chai
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Taojian Fan
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jiangtian Yu
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116, People's Republic of China
| | - Xiaopeng Ma
- Department of Respiratory, Shenzhen Children's Hospital, Shenzhen, 518038, People's Republic of China
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Zhiguang Luo
- Zhongmin (Shenzhen) Intelligent Ecology Co., Ltd, Shenzhen, 518055, People's Republic of China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, People's Republic of China
| | - Jingfeng Li
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116, People's Republic of China.
| | - Zhongjian Xie
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116, People's Republic of China.
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, 518038, People's Republic of China.
| | - Han Zhang
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
21
|
Ashraf J, Akbarinejad A, Hisey CL, Bryant DT, Wang J, Zhu B, Evans CW, Williams DE, Chamley LW, Barker D, Pilkington LI, Travas-Sejdic J. Conducting Polymer-Coated Carbon Cloth Captures and Releases Extracellular Vesicles by a Rapid and Controlled Redox Process. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32880-32889. [PMID: 35820023 DOI: 10.1021/acsami.2c06481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Electrochemical techniques offer great opportunities for the capture of chemical and biological entities from complex mixtures and their subsequent release into clean buffers for analysis. Such methods are clean, robust, rapid, and compatible with a wide range of biological fluids. Here, we designed an electrochemically addressable system, based on a conducting terpolymer [P(EDOT-co-EDOTSAc-co-EDOTEG)] coated onto a carbon cloth substrate, to selectively capture and release biological entities using a simple electrochemical redox process. The conducting terpolymer composition was optimized and the terpolymer-coated carbon cloth was extensively characterized using electrochemical analysis, Raman and Fourier transform-infrared spectroscopy, water contact angle analysis, and scanning electron microscopy. The conductive terpolymer possesses a derivative of EDOT with an acetylthiomethyl moiety (EDOTSAc), which is converted into a "free" thiol that then undergoes reversible oxidation/reduction cycles at +1.0 V and -0.8 V (vs Ag/AgCl), respectively. That redox process enables electrochemical capture and on-demand release. We first demonstrated the successful electrochemical capture/release of a fluorescently labeled IgG antibody. The same capture/release procedure was then applied to release extracellular vesicles (EVs), originating from both MCF7 and SKBR3 breast cancer cell line bioreactors. EVs were captured using the substrate-conjugated HER2 antibody which was purified from commercially available trastuzumab. Capture and release of breast cancer EVs using a trastuzumab-derived HER2 antibody has not been reported before (to the best of our knowledge). A rapid (2 min) release at a low potential (-0.8 V) achieved a high release efficiency (>70%) of the captured, HER2+ve, SKBR3 EVs. The developed system and the electrochemical method are efficient and straightforward and have vast potential for the isolation and concentration of various biological targets from large volumes of biological and other (e.g., environmental) samples.
Collapse
Affiliation(s)
- Jesna Ashraf
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Alireza Akbarinejad
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Colin L Hisey
- Hub for Extracellular Vesicles Investigations (HEVI), Department of Obstetrics and Gynaecology, The University of Auckland, Auckland 1023, New Zealand
| | - Devon T Bryant
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Julie Wang
- Hub for Extracellular Vesicles Investigations (HEVI), Department of Obstetrics and Gynaecology, The University of Auckland, Auckland 1023, New Zealand
| | - Bicheng Zhu
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Clive W Evans
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - David E Williams
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Lawrence W Chamley
- Hub for Extracellular Vesicles Investigations (HEVI), Department of Obstetrics and Gynaecology, The University of Auckland, Auckland 1023, New Zealand
| | - David Barker
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Lisa I Pilkington
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
22
|
Label-free detection of HPV mRNA with an artificial chaperone-enhanced MNAzyme (ACEzyme)-based electrochemical sensor. Biosens Bioelectron 2022; 221:114352. [PMID: 35690559 DOI: 10.1016/j.bios.2022.114352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
Nucleic acid biosensors for point-of-care (POC) diagnostic applications are highly desirable. The ability to detect DNA and RNA in a simple, rapid, affordable and portable format leads to a range of important applications for early screening in the field of disease monitoring and management. Herein, we report the development of an isothermal, label-free electrochemical biosensor that was designed on the basis of target-driven MNAzyme cleavage activity. Hybridization with HPV mRNA, a model nucleic acid target, activated MNAzyme and initiated the cleavage of immobilized hairpin substrates, leading to changes in the electrochemical signal. Under optimal conditions, a detection limit of 2.6 pM was obtained with an incubation time of 60 min. Furthermore, an artificial chaperone-enhanced MNAzyme (ACEzyme) system was integrated to an electrochemical biosensor for the first time. The analytical performance of the biosensor was enhanced, and the detection time was significantly reduced by the addition of PLL-g-Dex, which exhibits nucleic acid chaperone-like activity. A detection limit of 0.88 pM was obtained with a threefold decrease in incubation time without prior amplification. The proposed biosensing platform shows the advantages of simple fabrication and operation, good selectivity in the presence of single-base mismatch, and excellent versatility in a complex mixture of total RNA. We believe that this isothermal, label-free, and protein-free nucleic acid analysis platform could provide foundations for the further development of a universal nucleic acid biosensing platform for clinical application.
Collapse
|
23
|
Wied P, Carraro F, Bolivar JM, Doonan CJ, Falcaro P, Nidetzky B. Combining a Genetically Engineered Oxidase with Hydrogen-Bonded Organic Frameworks (HOFs) for Highly Efficient Biocomposites. Angew Chem Int Ed Engl 2022; 61:e202117345. [PMID: 35038217 PMCID: PMC9305891 DOI: 10.1002/anie.202117345] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 12/16/2022]
Abstract
Enzymes incorporated into hydrogen-bonded organic frameworks (HOFs) via bottom-up synthesis are promising biocomposites for applications in catalysis and sensing. Here, we explored synthetic incorporation of d-amino acid oxidase (DAAO) with the metal-free tetraamidine/tetracarboxylate-based BioHOF-1 in water. N-terminal enzyme fusion with the positively charged module Zbasic2 strongly boosted the loading (2.5-fold; ≈500 mg enzyme gmaterial-1 ) and the specific activity (6.5-fold; 23 U mg-1 ). The DAAO@BioHOF-1 composites showed superior activity with respect to every reported carrier for the same enzyme and excellent stability during catalyst recycling. Further, extension to other enzymes, including cytochrome P450 BM3 (used in the production of high-value oxyfunctionalized compounds), points to the versatility of genetic engineering as a strategy for the preparation of biohybrid systems with unprecedented properties.
Collapse
Affiliation(s)
- Peter Wied
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyPetersgasse 12/18010GrazAustria
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/Z28010GrazAustria
| | - Francesco Carraro
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/Z28010GrazAustria
| | - Juan M. Bolivar
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyPetersgasse 12/18010GrazAustria
| | - Christian J. Doonan
- Department of ChemistryThe University of AdelaideAdelaideSouth Australia 5005Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/Z28010GrazAustria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyPetersgasse 12/18010GrazAustria
| |
Collapse
|
24
|
Liang Y, Wang H, Xu Y, Pan H, Guo K, Zhang Y, Chen Y, Liu D, Zhang Y, Yao C, Yu Y, Shi G. A novel molecularly imprinted polymer composite based on polyaniline nanoparticles as sensitive sensors for parathion detection in the field. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Wied P, Carraro F, Bolivar JM, Doonan CJ, Falcaro P, Nidetzky B. Combining Genetically Engineered Oxidase with Hydrogen Bonded Organic Framework (HOF) for Highly Efficient Biocomposites. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Peter Wied
- Graz University of Technology: Technische Universitat Graz Biotechnology and Biochemical Engineering AUSTRIA
| | - Francesco Carraro
- Graz University of Technology: Technische Universitat Graz Physical Chemistry AUSTRIA
| | - Juan M. Bolivar
- Complutense University of Madrid: Universidad Complutense de Madrid Biochemical Engineering SPAIN
| | - Christian J. Doonan
- University of Adelaide Press: The University of Adelaide Chemistry AUSTRALIA
| | - Paolo Falcaro
- Graz University of Technology: Technische Universitat Graz Physical Chemistry AUSTRIA
| | - Bernd Nidetzky
- Biotechnology and Biochemical Engineering Graz University of Technology Petersgasse 12 8010 Graz AUSTRIA
| |
Collapse
|
26
|
Alathari MJA, Al Mashhadany Y, Mokhtar MHH, Burham N, Bin Zan MSD, A Bakar AA, Arsad N. Human Body Performance with COVID-19 Affectation According to Virus Specification Based on Biosensor Techniques. SENSORS (BASEL, SWITZERLAND) 2021; 21:8362. [PMID: 34960456 PMCID: PMC8704003 DOI: 10.3390/s21248362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Life was once normal before the first announcement of COVID-19's first case in Wuhan, China, and what was slowly spreading became an overnight worldwide pandemic. Ever since the virus spread at the end of 2019, it has been morphing and rapidly adapting to human nature changes which cause difficult conundrums in the efforts of fighting it. Thus, researchers were steered to investigate the virus in order to contain the outbreak considering its novelty and there being no known cure. In contribution to that, this paper extensively reviewed, compared, and analyzed two main points; SARS-CoV-2 virus transmission in humans and detection methods of COVID-19 in the human body. SARS-CoV-2 human exchange transmission methods reviewed four modes of transmission which are Respiratory Transmission, Fecal-Oral Transmission, Ocular transmission, and Vertical Transmission. The latter point particularly sheds light on the latest discoveries and advancements in the aim of COVID-19 diagnosis and detection of SARS-CoV-2 virus associated with this disease in the human body. The methods in this review paper were classified into two categories which are RNA-based detection including RT-PCR, LAMP, CRISPR, and NGS and secondly, biosensors detection including, electrochemical biosensors, electronic biosensors, piezoelectric biosensors, and optical biosensors.
Collapse
Affiliation(s)
- Mohammed Jawad Ahmed Alathari
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar 00964, Iraq;
| | - Mohd Hadri Hafiz Mokhtar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Norhafizah Burham
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Mohd Saiful Dzulkefly Bin Zan
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Ahmad Ashrif A Bakar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Norhana Arsad
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| |
Collapse
|
27
|
Delamarche E, Temiz Y, Lovchik RD, Christiansen MG, Schuerle S. Capillary Microfluidics for Monitoring Medication Adherence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Yuksel Temiz
- IBM Research Europe Saeumerstrasse 4 Rueschlikon Switzerland
| | | | - Michael G. Christiansen
- Institute for Translational Medicine Department of Health Sciences and Technology ETH Zurich Vladimir-Prelog-Weg 1–5/10 8092 Zurich Switzerland
| | - Simone Schuerle
- Institute for Translational Medicine Department of Health Sciences and Technology ETH Zurich Vladimir-Prelog-Weg 1–5/10 8092 Zurich Switzerland
| |
Collapse
|
28
|
Liu X, Xiang M, Zhang X, Li Q, Liu X, Zhang W, Qin X, Qu F. An Enzyme‐free Electrochemical H
2
O
2
Sensor Based on a Nickel Metal‐organic Framework Nanosheet Array. ELECTROANAL 2021. [DOI: 10.1002/elan.202100080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiao Liu
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165 Shandong China
| | - Mei‐Hao Xiang
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165 Shandong China
| | - Xinyue Zhang
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165 Shandong China
| | - Qin Li
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165 Shandong China
| | - Xiaoya Liu
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165 Shandong China
| | - Wenjing Zhang
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165 Shandong China
| | - Xia Qin
- School of Geography and Tourism Qufu Normal University Rizhao 276826 Shandong China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165 Shandong China
| |
Collapse
|
29
|
Castillo-León J, Trebbien R, Castillo JJ, Svendsen WE. Commercially available rapid diagnostic tests for the detection of high priority pathogens: status and challenges. Analyst 2021; 146:3750-3776. [PMID: 34060546 DOI: 10.1039/d0an02286a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ongoing COVID-19 pandemic has shown the importance of having analytical devices that allow a simple, fast, and robust detection of pathogens which cause epidemics and pandemics. The information these devices can collect is crucial for health authorities to make effective decisions to contain the disease's advance. The World Health Organization published a list of primary pathogens that have raised concern as potential causes of future pandemics. Unfortunately, there are no rapid diagnostic tests commercially available and approved by the regulatory bodies to detect most of the pathogens listed by the WHO. This report describes these pathogens, the available detection methods, and highlights areas where more attention is needed to produce rapid diagnostic tests for future pandemic surveillance.
Collapse
Affiliation(s)
- Jaime Castillo-León
- Bioengineering Department, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark.
| | - Ramona Trebbien
- Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| | - John J Castillo
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Winnie E Svendsen
- Bioengineering Department, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
30
|
Forouzanfar S, Pala N, Madou M, Wang C. Perspectives on C-MEMS and C-NEMS biotech applications. Biosens Bioelectron 2021; 180:113119. [PMID: 33711652 DOI: 10.1016/j.bios.2021.113119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 02/04/2023]
Abstract
Carbon microelectromechanical system (C-MEMS) and carbon nanoelectromechanical system (C-NEMS) have been identified as promising technologies for a range of biotech applications, including electrochemical biosensors, biofuel cells, neural probes, and dielectrophoretic cell trapping. Research teams around the world have devoted more and more time to this field. After almost two decades of efforts on developing C-MEMS and C-NEMS, a review of the relevant progress and addressing future research opportunities and critical issues is in order. This review first introduces C-MEMS and C-NEMS fabrication processes that fall into two categories: photolithography- and non-photolithography- based techniques. Next, a detailed discussion of the state of the art, and technical challenges and opportunities associated with C-MEMS and C-NEMS devices used in biotech applications are presented. These devices are discussed in the relevant sub-sections of biosensors, biofuel cells, intracorporeal neural probe, dielectrophoresis cell trapping, and cell culture. The review concludes with an exposition of future perspectives in C-MEMS and C-NEMS.
Collapse
Affiliation(s)
- Shahrzad Forouzanfar
- Electrical and Computer Engineering, Florida International University, United States
| | - Nezih Pala
- Electrical and Computer Engineering, Florida International University, United States
| | - Marc Madou
- Mechanical and Aerospace Engineering, University of California Irvine, United States
| | - Chunlei Wang
- Mechanical and Materials Engineering, Florida International University, United States; Center for Study of Matter at Extreme Conditions, Florida International University, United States.
| |
Collapse
|
31
|
Delamarche E, Temiz Y, Lovchik RD, Christiansen MG, Schuerle S. Capillary Microfluidics for Monitoring Medication Adherence. Angew Chem Int Ed Engl 2021; 60:17784-17796. [PMID: 33710725 DOI: 10.1002/anie.202101316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Medication adherence is a medical and societal issue worldwide, with approximately half of patients failing to adhere to prescribed treatments. The goal of this Minireview is to examine how recent work on microfluidics for point-of-care diagnostics may be used to enhance adherence to medication. It specifically focuses on capillary microfluidics since these devices are self-powered, easy to use, and well established for diagnostics and drug monitoring. Considering that an improvement in medication adherence can have a much larger effect than the development of new medical treatments, it is long overdue for the research communities working in chemistry, biology, pharmacology, and material sciences to consider developing technologies to enhance medication adherence. For these reasons, this Minireview is not meant to be exhaustive but rather to provide a quick starting point for researchers interested in joining this complex but intriguing and exciting field of research.
Collapse
Affiliation(s)
| | - Yuksel Temiz
- IBM Research Europe, Saeumerstrasse 4, Rueschlikon, Switzerland
| | | | - Michael G Christiansen
- Institute for Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8092, Zurich, Switzerland
| | - Simone Schuerle
- Institute for Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8092, Zurich, Switzerland
| |
Collapse
|
32
|
An ultrasensitive CRISPR/Cas12a based electrochemical biosensor for Listeria monocytogenes detection. Biosens Bioelectron 2021; 179:113073. [PMID: 33581428 DOI: 10.1016/j.bios.2021.113073] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022]
Abstract
Listeria monocytogenes is an important foodborne pathogen that can cause listeriosis with high patient mortality. Accordingly, it is necessary to develop a L. monocytogenes detection platform with high specificity, sensitivity, and exploitability. CRISPR/Cas systems have shown great potential in the development of next-generation biosensors for nucleic acid detection, owing to the trans-cleavage capabilities of the Cas effector proteins. Herein, we introduce the trans-cleavage activity of CRISPR/Cas12a into an electrochemical biosensor (E-CRISPR), combined with recombinase-assisted amplification (RAA), to establish a cost-effective, specific and ultrasensitive method; namely RAA-based E-CRISPR. The concept behind this approach is that the target will induce the number change of the surface signaling probe (containing an electrochemical tag), which leads to a variation in the electron transfer of the electrochemical tag. The introduction of an RAA-based Cas12a system into the E-CRISPR sensor achieves a more prominent signal change between the presence and absence of the target. Under optimized conditions, RAA-based E-CRISPR can detect as low as 0.68 aM of genomic DNA and 26 cfu/mL of L. monocytogenes in pure cultures. More importantly, the RAA-based E-CRISPR enables rapid and ultrasensitive detection of L. monocytogenes in spiked and natural Flammulina velutipes samples. Moreover, no cross-reactivity with other non-target bacteria was observed. This system thus demonstrates to be a simple, high-sensitivity, and high-accuracy platform for L. monocytogenes detection.
Collapse
|
33
|
Alawad A, Latapie L, Evrard D, Gros P, Istamboulie G, Noguer T, Calas‐Blanchard C. SECM for Studying the Immobilization and Repartition of a Redox Anti‐tetracycline Aptamer on Screen‐printed Carbon Electrodes. ELECTROANAL 2021. [DOI: 10.1002/elan.202060182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ahmad Alawad
- Université de Perpignan Via Domitia Biocapteurs-Analyse-Environnement 66860 Perpignan France
- Laboratoire de Biodiversité et Biotechnologies Microbiennes USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique 66650 Banyuls-sur-Mer France
| | - Laure Latapie
- Laboratoire de Génie Chimique Université de Toulouse, CNRS, INPT, UPS Toulouse France
| | - David Evrard
- Laboratoire de Génie Chimique Université de Toulouse, CNRS, INPT, UPS Toulouse France
| | - Pierre Gros
- Laboratoire de Génie Chimique Université de Toulouse, CNRS, INPT, UPS Toulouse France
| | - Georges Istamboulie
- Université de Perpignan Via Domitia Biocapteurs-Analyse-Environnement 66860 Perpignan France
- Laboratoire de Biodiversité et Biotechnologies Microbiennes USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique 66650 Banyuls-sur-Mer France
| | - Thierry Noguer
- Université de Perpignan Via Domitia Biocapteurs-Analyse-Environnement 66860 Perpignan France
- Laboratoire de Biodiversité et Biotechnologies Microbiennes USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique 66650 Banyuls-sur-Mer France
| | - Carole Calas‐Blanchard
- Université de Perpignan Via Domitia Biocapteurs-Analyse-Environnement 66860 Perpignan France
- Laboratoire de Biodiversité et Biotechnologies Microbiennes USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique 66650 Banyuls-sur-Mer France
| |
Collapse
|
34
|
Tortorella S, Cinti S. How Can Chemometrics Support the Development of Point of Need Devices? Anal Chem 2021; 93:2713-2722. [DOI: 10.1021/acs.analchem.0c04151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sara Tortorella
- Molecular Horizon srl, Via Montelino 30, 06084 Bettona, Perugia, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy
- BAT Center−Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli “Federico II”, 80055 Portici, Naples, Italy
| |
Collapse
|
35
|
Boyd MA, Kamat NP. Designing Artificial Cells towards a New Generation of Biosensors. Trends Biotechnol 2020; 39:927-939. [PMID: 33388162 DOI: 10.1016/j.tibtech.2020.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023]
Abstract
The combination of biological and synthetic materials has great potential to generate new types of biosensors. Toward this goal, recent advances in artificial cell development have demonstrated the capacity to detect a variety of analytes and environmental changes by encapsulating genetically encoded sensors within bilayer membranes, expanding the contexts within which biologically based sensing can operate. This chassis not only acts as a container for cell-free sensors, but can also play an active role in artificial cell sensing by serving as an additional gate mediating the transfer of environmental information. Here, we focus on recent progress toward stimuli-responsive artificial cells and discuss strategies for membrane functionalization in order to expand cell-free biosensing capabilities and applications.
Collapse
Affiliation(s)
- Margrethe A Boyd
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Neha P Kamat
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
36
|
Dai Y, Xu W, Somoza RA, Welter JF, Caplan AI, Liu CC. An Integrated Multi‐Function Heterogeneous Biochemical Circuit for High‐Resolution Electrochemistry‐Based Genetic Analysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yifan Dai
- Electronics Design Center Case Western Reserve University Cleveland OH 44106 USA
- Department of Biomedical Engineering Duke University Durham NC 27708 USA
| | - Wei Xu
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Rodrigo A. Somoza
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
- Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage Department of Biology Case Western Reserve University Cleveland OH 44106 USA
| | - Jean F. Welter
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
- Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage Department of Biology Case Western Reserve University Cleveland OH 44106 USA
| | - Arnold I. Caplan
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
- Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage Department of Biology Case Western Reserve University Cleveland OH 44106 USA
| | - Chung Chiun Liu
- Department of Chemical and Biomolecular Engineering Electronics Design Center Case Western Reserve University Cleveland OH 44106 USA
| |
Collapse
|
37
|
Dai Y, Xu W, Somoza RA, Welter JF, Caplan AI, Liu CC. An Integrated Multi-Function Heterogeneous Biochemical Circuit for High-Resolution Electrochemistry-Based Genetic Analysis. Angew Chem Int Ed Engl 2020; 59:20545-20551. [PMID: 32835412 PMCID: PMC9306392 DOI: 10.1002/anie.202010648] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/22/2022]
Abstract
Modular construction of an autonomous and programmable multi-functional heterogeneous biochemical circuit that can identify, transform, translate, and amplify biological signals into physicochemical signals based on logic design principles can be a powerful means for the development of a variety of biotechnologies. To explore the conceptual validity, we design a CRISPR-array-mediated primer-exchange-reaction-based biochemical circuit cascade, which probes a specific biomolecular input, transform the input into a structurally accessible form for circuit wiring, translate the input information into an arbitrary sequence, and finally amplify the prescribed sequence through autonomous formation of a signaling concatemer. This upstream biochemical circuit is further wired with a downstream electrochemical interface, delivering an integrated bioanalytical platform. We program this platform to directly analyze the genome of SARS-CoV-2 in human cell lysate, demonstrating the capability and the utility of this unique integrated system.
Collapse
Affiliation(s)
- Yifan Dai
- Electronics Design Center, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Wei Xu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rodrigo A Somoza
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage, Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jean F Welter
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage, Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Arnold I Caplan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage, Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Chung Chiun Liu
- Department of Chemical and Biomolecular Engineering, Electronics Design Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
38
|
Abstract
Biological signaling pathways are underpinned by protein switches that sense and respond to molecular inputs. Inspired by nature, engineered protein switches have been designed to directly transduce analyte binding into a quantitative signal in a simple, wash-free, homogeneous assay format. As such, they offer great potential to underpin point-of-need diagnostics that are needed across broad sectors to improve access, costs, and speed compared to laboratory assays. Despite this, protein switch assays are not yet in routine diagnostic use, and a number of barriers to uptake must be overcome to realize this potential. Here, we review the opportunities and challenges in engineering protein switches for rapid diagnostic tests. We evaluate how their design, comprising a recognition element, reporter, and switching mechanism, relates to performance and identify areas for improvement to guide further optimization. Recent modular switches that enable new analytes to be targeted without redesign are crucial to ensure robust and efficient development processes. The importance of translational steps toward practical implementation, including integration into a user-friendly device and thorough assay validation, is also discussed.
Collapse
Affiliation(s)
- Hope Adamson
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Lars J. C. Jeuken
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
39
|
Dai Y, Wu Y, Liu G, Gooding JJ. CRISPR Mediated Biosensing Toward Understanding Cellular Biology and Point‐of‐Care Diagnosis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005398] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering Duke University Durham North Carolina 27708 USA
- Department of Chemical and Biomolecular Engineering Case Western Reserve University Cleveland Ohio 44106 USA
| | - Yanfang Wu
- School of Chemistry Australian Centre for NanoMedicine, and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
| | - Guozhen Liu
- Graduate School of Biomedical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - J. Justin Gooding
- School of Chemistry Australian Centre for NanoMedicine, and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
40
|
Dai Y, Wu Y, Liu G, Gooding JJ. CRISPR Mediated Biosensing Toward Understanding Cellular Biology and Point-of-Care Diagnosis. Angew Chem Int Ed Engl 2020; 59:20754-20766. [PMID: 32521081 DOI: 10.1002/anie.202005398] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Recent advances in CRISPR based biotechnologies have greatly expanded our capabilities to repurpose CRISPR for the development of biomolecular sensors for diagnosing diseases and understanding cellular pathways. The key attribute that allows CRISPR to be widely utilized is the programmable and highly selective mechanism. In this Minireview, we first illustrate the molecular principle of CRISPR functioning process from sensing to actuating. Next, the CRISPR based biosensing strategies for nucleic acids, proteins and small molecules are summarized. We highlight some of recent advances in applications for in vitro detection of biomolecules and in vivo imaging of cellular networks. Finally, the challenges with, and exciting prospects of, CRISPR based biosensing developments are discussed.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA.,Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Yanfang Wu
- School of Chemistry, Australian Centre for NanoMedicine, and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - J Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine, and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
41
|
Singh S, Singh PK, Umar A, Lohia P, Albargi H, Castañeda L, Dwivedi DK. 2D Nanomaterial-Based Surface Plasmon Resonance Sensors for Biosensing Applications. MICROMACHINES 2020; 11:E779. [PMID: 32824184 PMCID: PMC7463818 DOI: 10.3390/mi11080779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
The absorption and binding energy of material plays an important role with a large surface area and conductivity for the development of any sensing device. The newly grown 2D nanomaterials like black phosphorus transition metal dichalcogenides (TMDCs) or graphene have excellent properties for sensing devices' fabrication. This paper summarizes the progress in the area of the 2D nanomaterial-based surface plasmon resonance (SPR) sensor during last decade. The paper also focuses on the structure of Kretschmann configuration, the sensing principle of SPR, its characteristic parameters, application in various fields, and some important recent works related to SPR sensors have also been discussed, based on the present and future scope of this field. The present paper provides a platform for researchers to work in the field of 2D nanomaterial-based SPR sensors.
Collapse
Affiliation(s)
- Sachin Singh
- Amorphous Semiconductor Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, India; (S.S.); (P.K.S.)
| | - Pravin Kumar Singh
- Amorphous Semiconductor Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, India; (S.S.); (P.K.S.)
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia;
| | - Pooja Lohia
- Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, India;
| | - Hasan Albargi
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia;
- Department of Physics, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - L. Castañeda
- Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Cd. de México, Mexico;
| | - D. K. Dwivedi
- Amorphous Semiconductor Research Lab, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, India; (S.S.); (P.K.S.)
| |
Collapse
|
42
|
Rossetti M, Brannetti S, Mocenigo M, Marini B, Ippodrino R, Porchetta A. Harnessing Effective Molarity to Design an Electrochemical DNA‐based Platform for Clinically Relevant Antibody Detection. Angew Chem Int Ed Engl 2020; 59:14973-14978. [DOI: 10.1002/anie.202005124] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Marianna Rossetti
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Simone Brannetti
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Marco Mocenigo
- Ulisse BioMed S.r.l. Area Science Park 34149 Trieste Italy
| | - Bruna Marini
- Ulisse BioMed S.r.l. Area Science Park 34149 Trieste Italy
| | - Rudy Ippodrino
- Ulisse BioMed S.r.l. Area Science Park 34149 Trieste Italy
| | - Alessandro Porchetta
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
43
|
Rossetti M, Brannetti S, Mocenigo M, Marini B, Ippodrino R, Porchetta A. Harnessing Effective Molarity to Design an Electrochemical DNA‐based Platform for Clinically Relevant Antibody Detection. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marianna Rossetti
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Simone Brannetti
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Marco Mocenigo
- Ulisse BioMed S.r.l. Area Science Park 34149 Trieste Italy
| | - Bruna Marini
- Ulisse BioMed S.r.l. Area Science Park 34149 Trieste Italy
| | - Rudy Ippodrino
- Ulisse BioMed S.r.l. Area Science Park 34149 Trieste Italy
| | - Alessandro Porchetta
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
44
|
Gao W, Zdrachek E, Xie X, Bakker E. A Solid‐State Reference Electrode Based on a Self‐Referencing Pulstrode. Angew Chem Int Ed Engl 2020; 59:2294-2298. [DOI: 10.1002/anie.201912651] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Wenyue Gao
- Department of Inorganic and Analytical ChemistryUniversity of Geneva Quai Ernest-Ansermet 30 CH-1211 Geneva Switzerland
- Department of ChemistrySouthern University of Science and Technology Shenzhen 518055 China
| | - Elena Zdrachek
- Department of Inorganic and Analytical ChemistryUniversity of Geneva Quai Ernest-Ansermet 30 CH-1211 Geneva Switzerland
| | - Xiaojiang Xie
- Department of ChemistrySouthern University of Science and Technology Shenzhen 518055 China
| | - Eric Bakker
- Department of Inorganic and Analytical ChemistryUniversity of Geneva Quai Ernest-Ansermet 30 CH-1211 Geneva Switzerland
| |
Collapse
|
45
|
Gao W, Zdrachek E, Xie X, Bakker E. A Solid‐State Reference Electrode Based on a Self‐Referencing Pulstrode. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Wenyue Gao
- Department of Inorganic and Analytical ChemistryUniversity of Geneva Quai Ernest-Ansermet 30 CH-1211 Geneva Switzerland
- Department of ChemistrySouthern University of Science and Technology Shenzhen 518055 China
| | - Elena Zdrachek
- Department of Inorganic and Analytical ChemistryUniversity of Geneva Quai Ernest-Ansermet 30 CH-1211 Geneva Switzerland
| | - Xiaojiang Xie
- Department of ChemistrySouthern University of Science and Technology Shenzhen 518055 China
| | - Eric Bakker
- Department of Inorganic and Analytical ChemistryUniversity of Geneva Quai Ernest-Ansermet 30 CH-1211 Geneva Switzerland
| |
Collapse
|
46
|
Dai Y, Somoza RA, Wang L, Welter JF, Li Y, Caplan AI, Liu CC. Exploring the Trans-Cleavage Activity of CRISPR-Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor. Angew Chem Int Ed Engl 2019; 58:17399-17405. [PMID: 31568601 PMCID: PMC6938695 DOI: 10.1002/anie.201910772] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/23/2019] [Indexed: 12/18/2022]
Abstract
An accurate, rapid, and cost-effective biosensor for the quantification of disease biomarkers is vital for the development of early-diagnostic point-of-care systems. The recent discovery of the trans-cleavage property of CRISPR type V effectors makes CRISPR a potential high-accuracy bio-recognition tool. Herein, a CRISPR-Cas12a (cpf1) based electrochemical biosensor (E-CRISPR) is reported, which is more cost-effective and portable than optical-transduction-based biosensors. Through optimizing the in vitro trans-cleavage activity of Cas12a, E-CRIPSR was used to detect viral nucleic acids, including human papillomavirus 16 (HPV-16) and parvovirus B19 (PB-19), with a picomolar sensitivity. An aptamer-based E-CRISPR cascade was further designed for the detection of transforming growth factor β1 (TGF-β1) protein in clinical samples. As demonstrated, E-CRISPR could enable the development of portable, accurate, and cost-effective point-of-care diagnostic systems.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Chemical and Biomolecular Engineering, Electronics Design Center, Case Western Reserve University; Cleveland, Ohio, 44106 (USA)
| | - Rodrigo A Somoza
- Department of Biology, Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, 44106 (USA)
| | - Liu Wang
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106 (USA)
| | - Jean F Welter
- Department of Biology, Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, 44106 (USA)
| | - Yan Li
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106 (USA)
| | - Arnold I Caplan
- Department of Biology, Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, 44106 (USA)
| | - Chung Chiun Liu
- Department of Chemical and Biomolecular Engineering, Electronics Design Center, Case Western Reserve University; Cleveland, Ohio, 44106 (USA)
| |
Collapse
|
47
|
Dai Y, Somoza RA, Wang L, Welter JF, Li Y, Caplan AI, Liu CC. Exploring the Trans‐Cleavage Activity of CRISPR‐Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910772] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yifan Dai
- Department of Chemical and Biomolecular Engineering, Electronics Design CenterCase Western Reserve University Cleveland OH 44106 USA
| | - Rodrigo A Somoza
- Department of Biology, Skeletal Research Center &, Center for Multimodal Evaluation of Engineered CartilageCase Western Reserve University Cleveland OH 44106 USA
| | - Liu Wang
- Department of Genetics and Genome SciencesSchool of MedicineCase Western Reserve University Cleveland OH 44106 USA
| | - Jean F. Welter
- Department of Biology, Skeletal Research Center &, Center for Multimodal Evaluation of Engineered CartilageCase Western Reserve University Cleveland OH 44106 USA
| | - Yan Li
- Department of Genetics and Genome SciencesSchool of MedicineCase Western Reserve University Cleveland OH 44106 USA
| | - Arnold I Caplan
- Department of Biology, Skeletal Research Center &, Center for Multimodal Evaluation of Engineered CartilageCase Western Reserve University Cleveland OH 44106 USA
| | - Chung Chiun Liu
- Department of Chemical and Biomolecular Engineering, Electronics Design CenterCase Western Reserve University Cleveland OH 44106 USA
| |
Collapse
|