1
|
Mrnjavac N, Wimmer JLE, Brabender M, Schwander L, Martin WF. The Moon-Forming Impact and the Autotrophic Origin of Life. Chempluschem 2023; 88:e202300270. [PMID: 37812146 PMCID: PMC7615287 DOI: 10.1002/cplu.202300270] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The Moon-forming impact vaporized part of Earth's mantle, and turned the rest into a magma ocean, from which carbon dioxide degassed into the atmosphere, where it stayed until water rained out to form the oceans. The rain dissolved CO2 and made it available to react with transition metal catalysts in the Earth's crust so as to ultimately generate the organic compounds that form the backbone of microbial metabolism. The Moon-forming impact was key in building a planet with the capacity to generate life in that it converted carbon on Earth into a homogeneous and accessible substrate for organic synthesis. Today all ecosystems, without exception, depend upon primary producers, organisms that fix CO2 . According to theories of autotrophic origin, it has always been that way, because autotrophic theories posit that the first forms of life generated all the molecules needed to build a cell from CO2 , forging a direct line of continuity between Earth's initial CO2 -rich atmosphere and the first microorganisms. By modern accounts these were chemolithoautotrophic archaea and bacteria that initially colonized the crust and still inhabit that environment today.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| | - Jessica L. E. Wimmer
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| | - Max Brabender
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| | - Loraine Schwander
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| | - William F. Martin
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| |
Collapse
|
2
|
Bertram L, Roberts SJ, Powner MW, Szabla R. Photochemistry of 2-thiooxazole: a plausible prebiotic precursor to RNA nucleotides. Phys Chem Chem Phys 2022; 24:21406-21416. [PMID: 36047336 PMCID: PMC7613695 DOI: 10.1039/d2cp03167a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potentially prebiotic chemical reactions leading to RNA nucleotides involve periods of UV irradiation, which are necessary to promote selectivity and destroy biologially irrelevant side products. Nevertheless, UV light has only been applied to promote specific stages of prebiotic reactions and its effect on complete prebiotic reaction sequences has not been extensively studied. Here, we report on an experimental and computational investigation of the photostability of 2-thiooxazole (2-TO), a potential precursor of pyrimidine and 8-oxopurine nucleotides on early Earth. Our UV-irradiation experiments resulted in rapid decomposition of 2-TO into unidentified small molecule photoproducts. We further clarify the underlying photochemistry by means of accurate ab initio calculations and surface hopping molecular dynamics simulations. Overall, the computational results show efficient rupture of the aromatic ring upon the photoexcitation of 2-TO via breaking of the C-O bond. Consequently, the initial stage of the divergent prebiotic synthesis of pyrimidine and 8-oxopurine nucleotides would require periodic shielding from UV light either with sun screening chromophores or through a planetary scenario that would protect 2-TO until it is transformed into a more stable intermediate compound, e.g. oxazolidinone thione.
Collapse
Affiliation(s)
- Lauren Bertram
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Samuel J Roberts
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Matthew W Powner
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Rafał Szabla
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
3
|
Bechtel M, Hümmer E, Trapp O. Selective Phosphorylation of RNA‐ and DNA‐Nucleosides under Prebiotically Plausible Conditions. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Maximilian Bechtel
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstr. 5–13 81377 Munich Germany
| | - Eva Hümmer
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstr. 5–13 81377 Munich Germany
| | - Oliver Trapp
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstr. 5–13 81377 Munich Germany
- Max-Planck-Institute for Astronomy Königstuhl 17 69117 Heidelberg Germany
| |
Collapse
|
4
|
Yi J, Kaur H, Kazöne W, Rauscher SA, Gravillier L, Muchowska KB, Moran J. A Nonenzymatic Analog of Pyrimidine Nucleobase Biosynthesis. Angew Chem Int Ed Engl 2022; 61:e202117211. [PMID: 35304939 PMCID: PMC9325535 DOI: 10.1002/anie.202117211] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/28/2022]
Abstract
Metabolic theories for the origin of life posit that inorganic catalysts enabled self-organized chemical precursors to the pathways of metabolism, including those that make genetic molecules. Recently, experiments showing nonenzymatic versions of a number of core metabolic pathways have started to support this idea. However, experimental demonstrations of nonenzymatic reaction sequences along the de novo ribonucleotide biosynthesis pathways are limited. Here we show that all three reactions of pyrimidine nucleobase biosynthesis that convert aspartate to orotate proceed at 60 °C without photochemistry under aqueous conditions in the presence of metals such as Cu2+ and Mn4+ . Combining reactions into one-pot variants is also possible. Life may not have invented pyrimidine nucleobase biosynthesis from scratch, but simply refined existing nonenzymatic reaction channels. This work is a first step towards uniting metabolic theories of life's origin with those centered around genetic molecules.
Collapse
Affiliation(s)
- Jing Yi
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
| | - Harpreet Kaur
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
| | - Wahnyalo Kazöne
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
| | - Sophia A. Rauscher
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
| | - Louis‐Albin Gravillier
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
| | - Kamila B. Muchowska
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)CNRS UMR 7006Université de Strasbourg8 Allée Gaspard Monge67000StrasbourgFrance
- Institut Universitaire de France (IUF)France
| |
Collapse
|
5
|
Grosch M, Stiebritz MT, Bolney R, Winkler M, Jückstock E, Busch H, Peters S, Siegle AF, van Slageren J, Ribbe M, Hu Y, Trapp O, Robl C, Weigand W. Mackinawite supported reduction of C1 substrates into prebiotically relevant precursors. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mario Grosch
- Friedrich Schiller Universitat Jena Chemisch Geowissenschaftliche Fakultat IAAC GERMANY
| | - Martin T Stiebritz
- UC Irvine: University of California Irvine Department of Molecular Biology and Biochemistry UNITED STATES
| | - Robert Bolney
- Friedrich Schiller Universitat Jena Chemisch Geowissenschaftliche Fakultat IAAC GERMANY
| | - Mario Winkler
- Universität Stuttgart Fakultät 3 Chemie: Universitat Stuttgart Fakultat 3 Chemie IPC GERMANY
| | - Eric Jückstock
- Friedrich Schiller Universitat Jena Chemisch Geowissenschaftliche Fakultat IAAC GERMANY
| | - Hannah Busch
- Friedrich Schiller Universitat Jena Chemisch Geowissenschaftliche Fakultat IAAC GERMANY
| | - Sophia Peters
- Ludwig-Maximilians-Universität München Fakultät für Chemie und Pharmazie: Ludwig-Maximilians-Universitat Munchen Fakultat fur Chemie und Pharmazie Department of Chemistry GERMANY
| | - Alexander F. Siegle
- Ludwig-Maximilians-Universität München Fakultät für Chemie und Pharmazie: Ludwig-Maximilians-Universitat Munchen Fakultat fur Chemie und Pharmazie Department of Chemistry GERMANY
| | - Joris van Slageren
- Universität Stuttgart Fakultät 3 Chemie: Universitat Stuttgart Fakultat 3 Chemie IPC GERMANY
| | - Markus Ribbe
- UC Irvine: University of California Irvine Department of Molecular Biology and Biochemistry GERMANY
| | - Yilin Hu
- UC Irvine: University of California Irvine Department of Molecular Biology and Biochemistry UNITED STATES
| | - Oliver Trapp
- Ludwig-Maximilians-Universität München Fakultät für Geowissenschaften: Ludwig-Maximilians-Universitat Munchen Fakultat fur Geowissenschaften Department of Chemistry UNITED STATES
| | - Christian Robl
- Friedrich Schiller Universitat Jena Chemisch Geowissenschaftliche Fakultat IAAC GERMANY
| | - Wolfgang Weigand
- Institut fuer Anorganische und Analytische Chemie Friedrich-Schiller-Universitaet Jena Humboldtstrasse 8 07743 Jena GERMANY
| |
Collapse
|
6
|
Sanada K, Washio A, Ishikawa H, Yoshida Y, Mino T, Sakamoto M. Chiral Symmetry Breaking of Monoacylated Anhydroerythritols and meso-1,2-Diols through Crystallization-Induced Deracemization. Angew Chem Int Ed Engl 2022; 61:e202201268. [PMID: 35229431 DOI: 10.1002/anie.202201268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 01/11/2023]
Abstract
We developed a chiral symmetry breaking method for monoacylated meso diols. The X-ray crystal structure analysis of monoacylated 1,4-anhydroerythritols, meso cyclic diols with a cis configuration, revealed that the O-(p-anisoyl) derivative crystallized as a racemic conglomerate of the P21 21 21 crystal system. It was confirmed that the substrate racemized by intramolecular transfer of the acyl group in the presence of a catalytic amount of base. Evaporating the solvent gradually from the solution or Viedma ripening to promote crystallization-induced deracemization efficiently led to enantiomer crystals. These results provide the first successful example of asymmetric expression and amplification by deracemization of sugar derivatives without an external chemical chiral source. Furthermore, we applied this methodology to acyclic meso-1,2-diols. Three O-monoacylated substrates were successfully deracemized to 99 % ee by Viedma ripening. We also developed asymmetric desymmetrization of meso-1,2-diols by combining acylation and crystallization-induced deracemization.
Collapse
Affiliation(s)
- Kazutaka Sanada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, Japan
| | - Aoi Washio
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, Japan
| | - Hiroki Ishikawa
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, Japan
| | - Yasushi Yoshida
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, Japan.,Molecular Chirality Research Center, Chiba University Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, Japan
| | - Takashi Mino
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, Japan.,Molecular Chirality Research Center, Chiba University Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, Japan
| | - Masami Sakamoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, Japan.,Molecular Chirality Research Center, Chiba University Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, Japan
| |
Collapse
|
7
|
Yi J, Kaur H, Kazöne W, Rauscher SA, Gravillier LA, Muchowska KB, Moran J. A Nonenzymatic Analog of Pyrimidine Nucleobase Biosynthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jing Yi
- University of Strasbourg: Universite de Strasbourg ISIS FRANCE
| | - Harpreet Kaur
- University of Strasbourg: Universite de Strasbourg ISIS FRANCE
| | - Wahnyalo Kazöne
- Université de Strasbourg: Universite de Strasbourg ISIS FRANCE
| | | | | | | | - Joseph Moran
- University of Strasbourg ISIS 8 allée Gaspard MongeBP 70028 67083 Strasbourg FRANCE
| |
Collapse
|
8
|
Sanada K, Washio A, Ishikawa H, Yoshida Y, Mino T, Sakamoto M. Chiral Symmetry Breaking of Monoacylated Anhydroerythritols and
meso
‐1,2‐Diols through Crystallization‐Induced Deracemization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazutaka Sanada
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University Yayoi-cho, Inage-ku, Chiba Chiba 263-8522 Japan
| | - Aoi Washio
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University Yayoi-cho, Inage-ku, Chiba Chiba 263-8522 Japan
| | - Hiroki Ishikawa
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University Yayoi-cho, Inage-ku, Chiba Chiba 263-8522 Japan
| | - Yasushi Yoshida
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University Yayoi-cho, Inage-ku, Chiba Chiba 263-8522 Japan
- Molecular Chirality Research Center Chiba University Yayoi-cho, Inage-ku, Chiba Chiba 263-8522 Japan
| | - Takashi Mino
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University Yayoi-cho, Inage-ku, Chiba Chiba 263-8522 Japan
- Molecular Chirality Research Center Chiba University Yayoi-cho, Inage-ku, Chiba Chiba 263-8522 Japan
| | - Masami Sakamoto
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University Yayoi-cho, Inage-ku, Chiba Chiba 263-8522 Japan
- Molecular Chirality Research Center Chiba University Yayoi-cho, Inage-ku, Chiba Chiba 263-8522 Japan
| |
Collapse
|
9
|
Closs AC, Bechtel M, Trapp O. Dynamic Exchange of Substituents in a Prebiotic Organocatalyst: Initial Steps towards an Evolutionary System. Angew Chem Int Ed Engl 2022; 61:e202112563. [PMID: 34705315 PMCID: PMC9298921 DOI: 10.1002/anie.202112563] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 11/07/2022]
Abstract
All evolutionary biological processes lead to a change in heritable traits over successive generations. The responsible genetic information encoded in DNA is altered, selected, and inherited by mutation of the base sequence. While this is well known at the biological level, an evolutionary change at the molecular level of small organic molecules is unknown but represents an important prerequisite for the emergence of life. Here, we present a class of prebiotic imidazolidine-4-thione organocatalysts able to dynamically change their constitution and potentially capable to form an evolutionary system. These catalysts functionalize their building blocks and dynamically adapt to their (self-modified) environment by mutation of their own structure. Depending on the surrounding conditions, they show pronounced and opposing selectivity in their formation. Remarkably, the preferentially formed species can be associated with different catalytic properties, which enable multiple pathways for the transition from abiotic matter to functional biomolecules.
Collapse
Affiliation(s)
- Anna C. Closs
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MunichGermany
- Max-Planck-Institute for AstronomyKönigstuhl 1769117HeidelbergGermany
| | - Maximilian Bechtel
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MunichGermany
| | - Oliver Trapp
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MunichGermany
- Max-Planck-Institute for AstronomyKönigstuhl 1769117HeidelbergGermany
| |
Collapse
|
10
|
Closs AC, Bechtel M, Trapp O. Dynamischer Austausch von Substituenten in einem präbiotischen Organokatalysator: Erste Schritte auf dem Weg zu einem evolutionären System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anna C. Closs
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 München Deutschland
- Max-Planck-Institut für Astronomie Königstuhl 17 69117 Heidelberg Deutschland
| | - Maximilian Bechtel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 München Deutschland
| | - Oliver Trapp
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 München Deutschland
- Max-Planck-Institut für Astronomie Königstuhl 17 69117 Heidelberg Deutschland
| |
Collapse
|
11
|
Bernhardt HS, Tate WP. A New Perspective on the Maillard Reaction and the Origin of Life. J Mol Evol 2021; 89:594-597. [PMID: 34633476 DOI: 10.1007/s00239-021-10030-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022]
Abstract
The Maillard reaction, a spontaneous 'one pot' reaction between amino acids and reducing sugars that occurs at low reactant concentrations and low temperatures, is a good candidate for having played a role in the origin of life on the Earth. In view of the probability that RNA and DNA were preceded by an evolutionary forerunner with a more straightforward prebiotic synthesis, it is a testament to the prescience of Oró and colleagues that, in 1975, they drew attention to the Maillard reaction, in particular evidence that melanoidin polymers (the end-product of the reaction) contain '…heterocyclic nitrogen compounds similar to the nitrogenous bases' (Nissenbaum in J Mol Evol 6:253-270, 1975). Indeed, reports of the Maillard reaction product, 2-Acetyl-6-(Hydroxymethyl)-5,6-Dihydro-4H-Pyridinone (AHDP), with a structure reminiscent of the pyrimidine nucleobase uracil, suggest the Maillard reaction might have played a key role in the synthesis of components of a proto-RNA polymer, with AHDP and two structurally related products predicted to be similar to uracil in the latter's ability to form non-standard base pair interactions. It is possible that the primary function of these interactions was to allow molecules such as AHDP to separate out of the prebiotic chemical clutter. If this were the case, catalysis, and coding-made possible by the polymerization of proto-nucleoside monomers into linear sequence strings-would have been evolving properties.
Collapse
Affiliation(s)
- Harold S Bernhardt
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| | - Warren P Tate
- Emeritus Professor, Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Kruse FM, Teichert JS, Trapp O. Prebiotic Nucleoside Synthesis: The Selectivity of Simplicity. Chemistry 2020; 26:14776-14790. [PMID: 32428355 PMCID: PMC7756251 DOI: 10.1002/chem.202001513] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/10/2020] [Indexed: 12/29/2022]
Abstract
Ever since the discovery of nucleic acids 150 years ago,[1] major achievements have been made in understanding and decrypting the fascinating scientific questions of the genetic code.[2] However, the most fundamental question about the origin and the evolution of the genetic code remains a mystery. How did nature manage to build up such intriguingly complex molecules able to encode structure and function from simple building blocks? What conditions were required? How could the precursors survive the unhostile environment of early Earth? Over the past decades, promising synthetic concepts were proposed providing clarity in the field of prebiotic nucleic acid research. In this Minireview, we show the current status and various approaches to answer these fascinating questions.
Collapse
Affiliation(s)
- Florian M. Kruse
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–13'81377MunichGermany
| | - Jennifer S. Teichert
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–13'81377MunichGermany
- Max-Planck-Institute for AstronomyKönigstuhl 1769117HeidelbergGermany
| | - Oliver Trapp
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–13'81377MunichGermany
- Max-Planck-Institute for AstronomyKönigstuhl 1769117HeidelbergGermany
| |
Collapse
|
13
|
Closs AC, Fuks E, Bechtel M, Trapp O. Prebiotically Plausible Organocatalysts Enabling a Selective Photoredox α-Alkylation of Aldehydes on the Early Earth. Chemistry 2020; 26:10702-10706. [PMID: 32233051 PMCID: PMC7496864 DOI: 10.1002/chem.202001514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 12/03/2022]
Abstract
Organocatalysis is a powerful approach to extend and (enantio-) selectively modify molecular structures. Adapting this concept to the Early Earth scenario offers a promising solution to explain their evolution into a complex homochiral world. Herein, we present a class of imidazolidine-4-thione organocatalysts, easily accessible from simple molecules available on an Early Earth under highly plausible prebiotic reaction conditions. These imidazolidine-4-thiones are readily formed from mixtures of aldehydes or ketones in presence of ammonia, cyanides and hydrogen sulfide in high selectivity and distinct preference for individual compounds of the resulting catalyst library. These organocatalysts enable the enantioselective α-alkylation of aldehydes under prebiotic conditions and show activities that correlate with the selectivity of their formation. Furthermore, the crystallization of single catalysts as conglomerates opens the pathway for symmetry breaking.
Collapse
Affiliation(s)
- Anna C. Closs
- Department of ChemistryLudwig Maximilian University MunichButenandtstrasse 5–1381377MunichGermany
- Max-Planck-Institute for AstronomyKönigstuhl 1769117HeidelbergGermany
| | - Elina Fuks
- Department of ChemistryLudwig Maximilian University MunichButenandtstrasse 5–1381377MunichGermany
| | - Maximilian Bechtel
- Department of ChemistryLudwig Maximilian University MunichButenandtstrasse 5–1381377MunichGermany
| | - Oliver Trapp
- Department of ChemistryLudwig Maximilian University MunichButenandtstrasse 5–1381377MunichGermany
- Max-Planck-Institute for AstronomyKönigstuhl 1769117HeidelbergGermany
| |
Collapse
|
14
|
Shalayel I, Youssef-Saliba S, Vazart F, Ceccarelli C, Bridoux M, Vallée Y. Cysteine Chemistry in Connection with Abiogenesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Fanny Vazart
- CNRS, IPAG; Univ. Grenoble Alpes; Grenoble France
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Oliver Reiser
- Institute of Organic Chemistry University of Regensburg Universitätsstr. 31 93053 Regensburg Germany
| |
Collapse
|