1
|
Peng H, Martens S, Uvyn A, Chen Y, Zhong Z, Louage B, De Geest BG. Exploration of Solid Phase Peptoid Synthesis for the Design of Trifunctional Hapten-Lipid-TLR7/8 Agonist Antibody-Recruiting Oligomers That Combine Innate Effector with Innate Activation Function. ACS APPLIED BIO MATERIALS 2024. [PMID: 39288003 DOI: 10.1021/acsabm.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The strategic engagement of innate immunity is a promising avenue for cancer treatment. Antibody-recruiting molecules (ARMs) direct endogenous antibodies to target tumor sites, eliciting innate immune effector killing responses. In this study, we report the synthesis of ARMs by employing solid-phase peptoid synthesis to construct three libraries of antibody-recruiting oligomers. Using dinitrophenyl (DNP) as a model hapten and alkyl lipid chains for cell surface anchoring, we tailored oligomers with variations in valency and spatial configuration. Among these, an oligomer design featuring DNP connected to the oligomer backbone through an extended PEG linker and flanked by two lipid motifs emerged as the most effective in antibody recruitment in vitro. This oligomer was further functionalized to include an imidazoquinoline, creating a trifunctional hapten-lipid-TLR7/8 agonist oligomer, and a parallel variant was conjugated with rhodamine, resulting in a trifunctional hapten-lipid-dye oligomer. Upon intratumorally administration in a murine model, these oligomers induced localized immune activation within tumors. Subsequent ex vivo analysis of single-cell suspensions from excised tumors confirmed the enhanced binding of anti-DNP antibodies. These findings underscore the potential of custom-designed ARMs in orchestrating precise immune-mediated tumor targeting and highlight the adaptability of solid-phase synthesis in oligomer design for the design of multifunctional antibody recruiting molecules.
Collapse
Affiliation(s)
- Haixia Peng
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Steven Martens
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Annemiek Uvyn
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Zifu Zhong
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Benoit Louage
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Park HW, Lee W, Kim S, Jangid AK, Park J, Lee CE, Kim K. Optimized Design of Hyaluronic Acid-Lipid Conjugate Biomaterial for Augmenting CD44 Recognition of Surface-Engineered NK Cells. Biomacromolecules 2024; 25:1959-1971. [PMID: 38379131 DOI: 10.1021/acs.biomac.3c01373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Triple-negative breast cancer (TNBC) presents treatment challenges due to a lack of detectable surface receptors. Natural killer (NK) cell-based adaptive immunotherapy is a promising treatment because of the characteristic anticancer effects of killing malignant cells directly by secreting cytokines and lytic granules. To maximize the cancer recognition ability of NK cells, biomaterial-mediated ex vivo cell surface engineering has been developed for sufficient cell membrane immobilization of tumor-targeting ligands via hydrophobic anchoring. In this study, we optimized amphiphilic balances of NK cell coating materials composed of CD44-targeting hyaluronic acid (HA)-poly(ethylene glycol) (PEG)-lipid to improve TNBC recognition and the anticancer effect. Changes in the modular design of our material by differentiating hydrophilic PEG length and incorporating lipid amount into HA backbones precisely regulated the amphiphilic nature of HA-PEG-lipid conjugates. The optimized biomaterial demonstrated improved anchoring into NK cell membranes and facilitating the surface presentation level of HA onto NK cell surfaces. This led to enhanced cancer targeting via increasing the formation of immune synapse, thereby augmenting the anticancer capability of NK cells specifically toward CD44-positive TNBC cells. Our approach addresses targeting ability of NK cell to solid tumors with a deficiency of surface tumor-specific antigens while offering a valuable material design strategy using amphiphilic balance in immune cell surface engineering techniques.
Collapse
Affiliation(s)
- Hee Won Park
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Wonjeong Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jaewon Park
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Chae Eun Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
3
|
Lee CE, Kim S, Park HW, Lee W, Jangid AK, Choi Y, Jeong WJ, Kim K. Tailoring tumor-recognizable hyaluronic acid-lipid conjugates to enhance anticancer efficacies of surface-engineered natural killer cells. NANO CONVERGENCE 2023; 10:56. [PMID: 38097911 PMCID: PMC10721593 DOI: 10.1186/s40580-023-00406-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023]
Abstract
Natural killer (NK) cells have clinical advantages in adoptive cell therapy owing to their inherent anticancer efficacy and their ability to identify and eliminate malignant tumors. However, insufficient cancer-targeting ligands on NK cell surfaces often inhibit their immunotherapeutic performance, especially in immunosuppressive tumor microenvironment. To facilitate tumor recognition and subsequent anticancer function of NK cells, we developed hyaluronic acid (HA, ligands to target CD44 overexpressed onto cancer cells)-poly(ethylene glycol) (PEG, cytoplasmic penetration blocker)-Lipid (molecular anchor for NK cell membrane decoration through hydrophobic interaction) conjugates for biomaterial-mediated ex vivo NK cell surface engineering. Among these major compartments (i.e., Lipid, PEG and HA), optimization of lipid anchors (in terms of chemical structure and intrinsic amphiphilicity) is the most important design parameter to modulate hydrophobic interaction with dynamic NK cell membranes. Here, three different lipid types including 1,2-dimyristoyl-sn-glycero-3-phosphati-dylethanolamine (C14:0), 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE, C18:0), and cholesterol were evaluated to maximize membrane coating efficacy and associated anticancer performance of surface-engineered NK cells (HALipid-NK cells). Our results demonstrated that NK cells coated with HA-PEG-DSPE conjugates exhibited significantly enhanced anticancer efficacies toward MDA-MB-231 breast cancer cells without an off-target effect on human fibroblasts specifically via increased NK cell membrane coating efficacy and prolonged surface duration of HA onto NK cell surfaces, thereby improving HA-CD44 recognition. These results suggest that our HALipid-NK cells with tumor-recognizable HA-PEG-DSPE conjugates could be further utilized in various cancer immunotherapies.
Collapse
Affiliation(s)
- Chae Eun Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hee Won Park
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Wonjeong Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yonghyun Choi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Kanagawa, 226-8501, Japan
| | - Woo-Jin Jeong
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
4
|
Lake BPM, Wylie RG, Bařinka C, Rullo AF. Tunable Multivalent Platform for Immune Recruitment to Lower Antigen Expressing Cancers. Angew Chem Int Ed Engl 2023; 62:e202214659. [PMID: 36577087 DOI: 10.1002/anie.202214659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Chemical immunotherapeutic strategies including Antibody Recruiting Molecules (ARMs - bivalent small molecules containing an antibody-binding domain (ABD) and a target-binding domain (TBD)) direct immune-mediated clearance of diseased cells. Anti-cancer ARM function relies on high tumor antigen valency, limiting function against lower antigen expressing tumors. To address this limitation, we report a tunable multivalent immune recruitment (MIR) platform to amplify/stabilize antibody recruitment to cells with lower antigen valencies. An initial set of polymeric ARMs (pARMs) were synthesized and screened to evaluate ABD/TBD copy number, ratio, and steric occlusion on specific immune induction. Most pARMs demonstrated simultaneous high avidity binding to anti-dinitrophenyl antibodies and prostate-specific membrane antigens on prostate cancer. Optimized pARMs mediated enhanced anti-cancer immune function against lower antigen expressing target cells compared to an analogous ARM.
Collapse
Affiliation(s)
- Benjamin P M Lake
- Department of Medicine, Center for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Ryan G Wylie
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada.,School of Biomedical Engineering, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Anthony F Rullo
- Department of Medicine, Center for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| |
Collapse
|
5
|
Szponarski M, Gademann K. Antibody Recognition of Cancer Cells via Glycan Surface Engineering. Chembiochem 2022; 23:e202200125. [PMID: 35638149 PMCID: PMC9400979 DOI: 10.1002/cbic.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/25/2022] [Indexed: 11/21/2022]
Abstract
Stimulation of the body's immune system toward tumor cells is now well recognized as a promising strategy in cancer therapy. Just behind cell therapy and monoclonal antibodies, small molecule-based strategies are receiving growing attention as alternatives to direct immune response against tumor cells. However, the development of small-molecule approaches to modulate the balance between stimulatory immune factors and suppressive factors in a targeted way remains a challenge. Here, we report the cell surface functionalization of LS174T cancer cells with an abiotic hapten to recruit antibodies to the cell surface. Metabolic glycoengineering followed by covalent reaction with the hapten results in antibody recognition of the target cells. Microscopy and flow cytometry studies provide compelling evidence that metabolic glycoengineering and small molecule stimulators can be combined to direct antibody recognition.
Collapse
Affiliation(s)
| | - Karl Gademann
- Department of ChemistryUniversity of Zurich8057ZurichSwitzerland
| |
Collapse
|
6
|
Charles WZ, Faries CR, Street YT, Flowers LS, McNaughton B. Antibody‐Recruitment as a Therapeutic Strategy: A Brief History and Recent Advances. Chembiochem 2022; 23:e202200092. [DOI: 10.1002/cbic.202200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | - Brian McNaughton
- Delaware State University Delaware Institute for Science and Technology 1200 N Dupont Hwy 19901 Dover UNITED STATES
| |
Collapse
|
7
|
Goyard D, Diriwari PI, Berthet N. Metabolic labelling of cancer cells with glycodendrimers stimulate immune-mediated cytotoxicity. RSC Med Chem 2022; 13:72-78. [PMID: 35211675 PMCID: PMC8792828 DOI: 10.1039/d1md00262g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
The recruitment of antibody naturally present in human blood stream at the surface of cancer cells have been proved a promising immunotherapeutic strategy to fight cancer. Antibody recruiting molecules (ARMs) combining tumor and antibody binding modules have been developed for this purpose, however the formation of the interacting complex with both antibody and cell is difficult to optimize to stimulate immune-mediated cytotoxicity. To circumvent this limitation, we report herein a more direct approach combining cell metabolism of azido-sugar and bio-orthogonal click chemistry to conjugate at the cell glycocalyx structurally well-defined glycodendrimers as antibody binding module (ABM). We demonstrate that this strategy allows not only the recruitment of natural antibody at the surface of isolated cells or solid tumor models but also activate a cytotoxic response with human serum as unique source of immune effectors.
Collapse
Affiliation(s)
- David Goyard
- Univ. Grenoble Alpes, CNRS DCM UMR 5250 F-38000 Grenoble France
| | | | | |
Collapse
|
8
|
Liet B, Laigre E, Goyard D, Todaro B, Tiertant C, Boturyn D, Berthet N, Renaudet O. Multifunctional Glycoconjugates for Recruiting Natural Antibodies against Cancer Cells. Chemistry 2019; 25:15508-15515. [PMID: 31613028 PMCID: PMC6916168 DOI: 10.1002/chem.201903327] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/05/2019] [Indexed: 01/04/2023]
Abstract
We have developed a fully synthetic and multifunctional antibody-recruiting molecule (ARM) to guide natural antibodies already present in the blood stream against cancer cells without pre-immunization. Our ARM is composed of antibody and tumor binding modules (i.e., ABM and TBM) displaying clustered rhamnose and cyclo-RGD, respectively. By using a stepwise approach, we have first demonstrated the importance of multivalency for efficient recognition with naturel IgM and αv β3 integrin expressing M21 tumor cell line. Once covalently conjugated by click chemistry, we confirmed by flow cytometry and confocal microscopy that the recognition properties of both the ABM and TBM are conserved, and more importantly, that the resulting ARM promotes the formation of a ternary complex between natural IgM and cancer cells, which is required for the stimulation of the cytotoxic immune response in vivo. Due to the efficiency of the synthetic process, a larger diversity of heterovalent ligands could be easily explored by using the same multivalent approach and could open new perspectives in this field.
Collapse
Affiliation(s)
- Benjamin Liet
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - Eugénie Laigre
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - David Goyard
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - Biagio Todaro
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - Claire Tiertant
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - Didier Boturyn
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | | | | |
Collapse
|