1
|
Michel NWM, Gabbey AL, Edjoc RK, Fagbola E, Hughes JME, Campeau LC, Rousseaux SAL. Nickel-Catalyzed Reductive Arylation of Redox Active Esters for the Synthesis of α-Aryl Nitriles: Investigation of a Chlorosilane Additive. J Org Chem 2024; 89:16161-16169. [PMID: 38197128 DOI: 10.1021/acs.joc.3c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
A nickel-catalyzed reductive cross-coupling of redox active N-hydroxyphthalimide (NHP) esters and iodoarenes for the synthesis of α-aryl nitriles is described. The NHP ester substrate is derived from cyanoacetic acid, which allows for a modular synthesis of substituted α-aryl nitriles, an important scaffold in the pharmaceutical sciences. The reaction exhibits a broad scope, and many functional groups are compatible under the reaction conditions, including complex highly functionalized medicinal agents. Mechanistic studies reveal that reduction and decarboxylation of the NHP ester to the reactive radical intermediate are accomplished by a combination of a chlorosilane additive and Zn dust. We demonstrate that stoichiometric chlorosilane is essential for product formation and that chlorosilane plays a role beyond activation of the metal reductant.
Collapse
Affiliation(s)
- Nicholas W M Michel
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Alexis L Gabbey
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Racquel K Edjoc
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Emmanuel Fagbola
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jonathan M E Hughes
- Department of Process Research and Development, Merck & Company Inc., Rahway, New Jersey 07065, United States
| | - Louis-Charles Campeau
- Department of Process Research and Development, Merck & Company Inc., Rahway, New Jersey 07065, United States
| | - Sophie A L Rousseaux
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
2
|
Wang W, Shen C, Zhang L, Dong K. Synthesis of Chiral α-Aryl Ketones by Photoredox/Nickel-Catalyzed Enantioconvergent Acyl Cross-Coupling with Organotrifluoroborate. Org Lett 2024; 26:850-854. [PMID: 38251833 DOI: 10.1021/acs.orglett.3c04004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Photoredox/nickel-catalyzed enantioconvergent acyl cross-coupling of carboxylic derivatives with racemic secondary organotrifluoroborate was developed for the synthesis of an enolizable chiral α-aryl ketone under mild neutral conditions. Moderate to high yields and good enantioselectivities were achieved.
Collapse
Affiliation(s)
- Weichen Wang
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Chaoren Shen
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Linli Zhang
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Kaiwu Dong
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
3
|
Karakaya I, Rizwan K, Munir S. Transition‐Metal Catalyzed Coupling Reactions for the Synthesis of (Het)aryl Ketones: An Approach from their Synthesis to Biological Perspectives. ChemistrySelect 2023. [DOI: 10.1002/slct.202204005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Whyte A, Yoon TP. Selective Cross-Ketonization of Carboxylic Acids Enabled by Metallaphotoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202213739. [PMID: 36318472 PMCID: PMC9771944 DOI: 10.1002/anie.202213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Indexed: 11/30/2022]
Abstract
Carboxylic acids are attractive building blocks for synthetic chemistry because they are chemically stable, abundant, and commercially available with substantial structural diversity. The process of combining two carboxylic acids to furnish a ketone is termed ketonization. This is a potentially valuable transformation that has been underutilized in organic synthesis due to the harsh reaction conditions generally required and the lack of selectivity obtained when coupling two distinct carboxylic acids. We report herein a metallaphotoredox strategy that selectively generates unsymmetrical ketones via cross-ketonization of two structurally dissimilar carboxylic acids. Cross-selectivity is achieved by exploiting divergent reactivity of differentially substituted acids towards critical one- and two-electron processes in the proposed coupling mechanism. This method is broadly applicable to a variety of functionalized carboxylic acids. It can also be applied to acids of similar steric profile by exploiting differences in their relative rates of decarboxylation.
Collapse
Affiliation(s)
- Andrew Whyte
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison WI 53706 (USA)
| | - Tehshik P. Yoon
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison WI 53706 (USA)
| |
Collapse
|
5
|
Whyte A, Yoon TP. Selective Cross‐Ketonization of Carboxylic Acids Enabled by Metallaphotoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Andrew Whyte
- Department of Chemistry University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Tehshik P. Yoon
- Department of Chemistry University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
6
|
Salgueiro DC, Chi BK, Guzei IA, García‐Reynaga P, Weix DJ. Control of Redox-Active Ester Reactivity Enables a General Cross-Electrophile Approach to Access Arylated Strained Rings. Angew Chem Int Ed Engl 2022; 61:e202205673. [PMID: 35688769 PMCID: PMC9378488 DOI: 10.1002/anie.202205673] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 11/20/2022]
Abstract
Strained rings are increasingly important for the design of pharmaceutical candidates, but cross-coupling of strained rings remains challenging. An attractive, but underdeveloped, approach to diverse functionalized carbocyclic and heterocyclic frameworks containing all-carbon quaternary centers is the coupling of abundant strained-ring carboxylic acids with abundant aryl halides. Herein we disclose the development of a nickel-catalyzed cross-electrophile approach that couples a variety of strained ring N-hydroxyphthalimide (NHP) esters, derived from the carboxylic acid in one step, with various aryl and heteroaryl halides under reductive conditions. The chemistry is enabled by the discovery of methods to control NHP ester reactivity, by tuning the solvent or using modified NHP esters, and the discovery that t-Bu BpyCamCN , an L2X ligand, avoids problematic side reactions. This method can be run in flow and in 96-well plates.
Collapse
Affiliation(s)
| | - Benjamin K. Chi
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| | - Ilia A. Guzei
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| | | | - Daniel J. Weix
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI 53706USA
| |
Collapse
|
7
|
He X, Hu S, Xiao Y, Yu L, Duan W. Access to Ketones through Palladium‐Catalyzed Cross‐Coupling of Phenol Derivatives with Nitroalkanes Followed by Nef Reaction. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoyu He
- Guangxi University College of Chemistry and Chemical Engineering 100 East Daxue Road Nanning CHINA
| | - Sengui Hu
- Guangxi University College of Chemistry and Chemical Engineering 100 East Daxue Road Nanning CHINA
| | - Yuxuan Xiao
- Guangxi University College of Chemistry and Chemical Engineering Nanning CHINA
| | - Lin Yu
- Guangxi University Chemistry No. 100, East Daxue Road 530004 Nanning CHINA
| | - Wengui Duan
- Guangxi University College of Chemistry and Chemical Engineering 100 East Daxue Road Nanning CHINA
| |
Collapse
|
8
|
Salgueiro DC, Chi BK, Guzei IA, García-Reynaga P, Weix DJ. Control of Redox‐Active Ester Reactivity Enables a General Cross‐Electrophile Approach to Access Arylated Strained Rings. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Benjamin K. Chi
- UW-Madison: University of Wisconsin Madison Chemistry UNITED STATES
| | - Ilia A. Guzei
- UW-Madison: University of Wisconsin Madison Chemistry UNITED STATES
| | | | - Daniel John Weix
- UW-Madison: University of Wisconsin Madison Chemistry 1101 University Avenue 53706 Madison UNITED STATES
| |
Collapse
|
9
|
Zhou X, Guo L, Zhang H, Xia RY, Yang C, Xia W. Nickel‐Catalyzed Reductive Acylation of Carboxylic Acids with Alkyl Halides and
N
‐Hydroxyphthalimide Esters Enabled by Electrochemical Process. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao Zhou
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Haoxiang Zhang
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Raymond Yang Xia
- The Affiliated International School of Shenzhen University Shenzhen 518054 People's Republic of China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
10
|
Pandey AK. Emerging Nickel Catalysis in Ketones Synthesis Using Carboxylic Acid Derivatives. ChemCatChem 2022. [DOI: 10.1002/cctc.202101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ashok Kumar Pandey
- IICT CSIR: Indian Institute of Chemical Technology Fluoro-Agrochemicals Uppal RoadTarnaka 500007 Hyderbada INDIA
| |
Collapse
|
11
|
Xi X, Luo Y, Li W, Xu M, Zhao H, Chen Y, Zheng S, Qi X, Yuan W. From Esters to Ketones via a Photoredox‐Assisted Reductive Acyl Cross‐Coupling Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoxiang Xi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Yixin Luo
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Weirong Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Minghao Xu
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Hongping Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Yukun Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Songlin Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Weiming Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| |
Collapse
|
12
|
Zhang Z, Cernak T. The Formal Cross‐Coupling of Amines and Carboxylic Acids to Form sp
3
–sp
3
Carbon–Carbon Bonds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zirong Zhang
- Department of Medicinal Chemistry College of Pharmacy University of Michigan 930 N University Ave Ann Arbor MI 48109 USA
| | - Tim Cernak
- Department of Medicinal Chemistry College of Pharmacy University of Michigan 930 N University Ave Ann Arbor MI 48109 USA
| |
Collapse
|
13
|
Xi X, Luo Y, Li W, Xu M, Zhao H, Chen Y, Zheng S, Qi X, Yuan W. From Esters to Ketones via a Photoredox-Assisted Reductive Acyl Cross-Coupling Strategy. Angew Chem Int Ed Engl 2021; 61:e202114731. [PMID: 34783143 DOI: 10.1002/anie.202114731] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 12/14/2022]
Abstract
A method was developed for ketone synthesis via a photoredox-assisted reductive acyl cross-coupling (PARAC) using a nickel/photoredox dual-catalyzed cross-electrophile coupling of two different carboxylic acid esters. A variety of aryl, 1°, 2°, 3°-alkyl 2-pyridyl esters can act as acyl electrophiles while N-(acyloxy)phthalimides (NHPI esters) act as 1°, 2°, 3°-radical precursors. Our PARAC strategy provides an alternative and reliable way to synthesize various sterically congested 3°-3°, 3°-2°, and aryl-3° ketones under mild and highly unified conditions, which have been otherwise difficult to access. The combined experimental and computational studies identified a Ni0 /NiI /NiIII pathway for ketone formation.
Collapse
Affiliation(s)
- Xiaoxiang Xi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Yixin Luo
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Weirong Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Minghao Xu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Hongping Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Yukun Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Songlin Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Weiming Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| |
Collapse
|
14
|
Zhang Z, Cernak T. The Formal Cross-Coupling of Amines and Carboxylic Acids to Form sp 3 -sp 3 Carbon-Carbon Bonds. Angew Chem Int Ed Engl 2021; 60:27293-27298. [PMID: 34669980 DOI: 10.1002/anie.202112454] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 12/25/2022]
Abstract
We have developed a deaminative-decarboxylative protocol to form new carbon(sp3 )-carbon(sp3 ) bonds from activated amines and carboxylic acids. Amines and carboxylic acids are ubiquitous building blocks, available in broad chemical diversity and at lower cost than typical C-C coupling partners. To leverage amines and acids for C-C coupling, we developed a reductive nickel-catalyzed cross-coupling utilizing building block activation as pyridinium salts and redox-active esters, respectively. Miniaturized high-throughput experimentation studies were critical to our reaction optimization, with subtle experimental changes such as order of reagent addition, composition of a binary solvent system, and ligand identity having a significant impact on reaction performance. The developed protocol is used in the late-stage diversification of pharmaceuticals while more than one thousand systematically captured and machine-readable reaction datapoints are reposited.
Collapse
Affiliation(s)
- Zirong Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 930 N University Ave, Ann Arbor, MI, 48109, USA
| | - Tim Cernak
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 930 N University Ave, Ann Arbor, MI, 48109, USA
| |
Collapse
|
15
|
Liu Z, Kole GK, Budiman YP, Tian Y, Friedrich A, Luo X, Westcott SA, Radius U, Marder TB. Transition Metal Catalyst‐Free, Base‐Promoted 1,2‐Additions of Polyfluorophenylboronates to Aldehydes and Ketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhiqiang Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Goutam Kumar Kole
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Department of Chemistry College of Engineering and Technology SRM Institute of Science and Technology SRM Nagar Kattankulathur Tamil Nadu 603203 India
| | - Yudha P. Budiman
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Department of Chemistry Faculty of Mathematics and Natural Sciences Universitas Padjadjaran 45363 Jatinangor Indonesia
| | - Ya‐Ming Tian
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Xiaoling Luo
- Chongqing Key Laboratory of Inorganic Functional Materials College of Chemistry Chongqing Normal University Chongqing 401331 China
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry Mount Allison University Sackville NB E4L 1G8 Canada
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
16
|
Liu Z, Kole GK, Budiman YP, Tian Y, Friedrich A, Luo X, Westcott SA, Radius U, Marder TB. Transition Metal Catalyst-Free, Base-Promoted 1,2-Additions of Polyfluorophenylboronates to Aldehydes and Ketones. Angew Chem Int Ed Engl 2021; 60:16529-16538. [PMID: 33901332 PMCID: PMC8362073 DOI: 10.1002/anie.202103686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Indexed: 12/23/2022]
Abstract
A novel protocol for the transition metal-free 1,2-addition of polyfluoroaryl boronate esters to aldehydes and ketones is reported, which provides secondary alcohols, tertiary alcohols, and ketones. Control experiments and DFT calculations indicate that both the ortho-F substituents on the polyfluorophenyl boronates and the counterion K+ in the carbonate base are critical. The distinguishing features of this procedure include the employment of commercially available starting materials and the broad scope of the reaction with a wide variety of carbonyl compounds giving moderate to excellent yields. Intriguing structural features involving O-H⋅⋅⋅O and O-H⋅⋅⋅N hydrogen bonding, as well as arene-perfluoroarene interactions, in this series of racemic polyfluoroaryl carbinols have also been addressed.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Goutam Kumar Kole
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Department of ChemistryCollege of Engineering and TechnologySRM Institute of Science and TechnologySRM NagarKattankulathurTamil Nadu603203India
| | - Yudha P. Budiman
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Department of ChemistryFaculty of Mathematics and Natural SciencesUniversitas Padjadjaran45363JatinangorIndonesia
| | - Ya‐Ming Tian
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Xiaoling Luo
- Chongqing Key Laboratory of Inorganic Functional MaterialsCollege of ChemistryChongqing Normal UniversityChongqing401331China
| | - Stephen A. Westcott
- Department of Chemistry and BiochemistryMount Allison UniversitySackvilleNBE4L 1G8Canada
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
17
|
Zheng YL, Xie PP, Daneshfar O, Houk KN, Hong X, Newman SG. Direct Synthesis of Ketones from Methyl Esters by Nickel-Catalyzed Suzuki-Miyaura Coupling. Angew Chem Int Ed Engl 2021; 60:13476-13483. [PMID: 33792138 DOI: 10.1002/anie.202103327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 12/14/2022]
Abstract
The direct conversion of alkyl esters to ketones has been hindered by the sluggish reactivity of the starting materials and the susceptibility of the product towards subsequent nucleophilic attack. We have now achieved a cross-coupling approach to this transformation using nickel, a bulky N-heterocyclic carbene ligand, and alkyl organoboron coupling partners. 65 alkyl ketones bearing diverse functional groups and heterocyclic scaffolds have been synthesized with this method. Catalyst-controlled chemoselectivity is observed for C(acyl)-O bond activation of multi-functional substrates bearing other bonds prone to cleavage by Ni, including aryl ether, aryl fluoride, and N-Ph amide functional groups. Density functional theory calculations provide mechanistic support for a Ni0 /NiII catalytic cycle and demonstrate how stabilizing non-covalent interactions between the bulky catalyst and substrate are critical for the reaction's success.
Collapse
Affiliation(s)
- Yan-Long Zheng
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Pei-Pei Xie
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Omid Daneshfar
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
18
|
Zheng Y, Xie P, Daneshfar O, Houk KN, Hong X, Newman SG. Direct Synthesis of Ketones from Methyl Esters by Nickel‐Catalyzed Suzuki–Miyaura Coupling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yan‐Long Zheng
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Pei‐Pei Xie
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Omid Daneshfar
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Xin Hong
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
19
|
Roscales S, Csáky AG. Synthesis of Ketones by C−H Functionalization of Aldehydes with Boronic Acids under Transition‐Metal‐Free Conditions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Silvia Roscales
- Instituto Pluridisciplinar Universidad Complutense Campus de Excelencia Internacional Moncloa Paseo de Juan XXIII, 1 28040 Madrid Spain
| | - Aurelio G. Csáky
- Instituto Pluridisciplinar Universidad Complutense Campus de Excelencia Internacional Moncloa Paseo de Juan XXIII, 1 28040 Madrid Spain
| |
Collapse
|
20
|
Roscales S, Csáky AG. Synthesis of Ketones by C-H Functionalization of Aldehydes with Boronic Acids under Transition-Metal-Free Conditions. Angew Chem Int Ed Engl 2021; 60:8728-8732. [PMID: 33476411 DOI: 10.1002/anie.202015835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/30/2020] [Indexed: 12/11/2022]
Abstract
A method for the synthesis of ketones from aldehydes and boronic acids via a transition-metal-free C-H functionalization reaction is reported. The method employs nitrosobenzene as a reagent to drive the simultaneous activation of the boronic acid as a boronate and the activation of the C-H bond of the aldehyde as an iminium species that triggers the key C-C bond-forming step via an intramolecular migration from boron to carbon. These findings constitute a practical, scalable, and operationally straightforward method for the synthesis of ketones.
Collapse
Affiliation(s)
- Silvia Roscales
- Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa, Paseo de Juan XXIII, 1, 28040, Madrid, Spain
| | - Aurelio G Csáky
- Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa, Paseo de Juan XXIII, 1, 28040, Madrid, Spain
| |
Collapse
|
21
|
Aguilar Troyano FJ, Merkens K, Anwar K, Gómez‐Suárez A. Radical-Based Synthesis and Modification of Amino Acids. Angew Chem Int Ed Engl 2021; 60:1098-1115. [PMID: 32841470 PMCID: PMC7820943 DOI: 10.1002/anie.202010157] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 12/30/2022]
Abstract
Amino acids (AAs) are key structural motifs with widespread applications in organic synthesis, biochemistry, and material sciences. Recently, with the development of milder and more versatile radical-based procedures, the use of strategies relying on radical chemistry for the synthesis and modification of AAs has gained increased attention, as they allow rapid access to libraries of novel unnatural AAs containing a wide range of structural motifs. In this Minireview, we provide a broad overview of the advancements made in this field during the last decade, focusing on methods for the de novo synthesis of α-, β-, and γ-AAs, as well as for the selective derivatisation of canonical and non-canonical α-AAs.
Collapse
Affiliation(s)
| | - Kay Merkens
- Organic ChemistryBergische Universität WuppertalGaussstrasse 2042119WuppertalGermany
| | - Khadijah Anwar
- Organic ChemistryBergische Universität WuppertalGaussstrasse 2042119WuppertalGermany
| | - Adrián Gómez‐Suárez
- Organic ChemistryBergische Universität WuppertalGaussstrasse 2042119WuppertalGermany
| |
Collapse
|
22
|
|
23
|
Wang J, Hoerrner ME, Watson MP, Weix DJ. Nickel-Catalyzed Synthesis of Dialkyl Ketones from the Coupling of N-Alkyl Pyridinium Salts with Activated Carboxylic Acids. Angew Chem Int Ed Engl 2020; 59:13484-13489. [PMID: 32374951 PMCID: PMC7397811 DOI: 10.1002/anie.202002271] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Indexed: 12/11/2022]
Abstract
While ketones are among the most versatile functional groups, their synthesis remains reliant upon reactive and low-abundance starting materials. In contrast, amide formation is the most-used bond-construction method in medicinal chemistry because the chemistry is reliable and draws upon large and diverse substrate pools. A new method for the synthesis of ketones is presented here that draws from the same substrates used for amide bond synthesis: amines and carboxylic acids. A nickel terpyridine catalyst couples N-alkyl pyridinium salts with in situ formed carboxylic acid fluorides or 2-pyridyl esters under reducing conditions (Mn metal). The reaction has a broad scope, as demonstrated by the synthesis of 35 different ketones bearing a wide variety of functional groups with an average yield of 60±16 %. This approach is capable of coupling diverse substrates, including pharmaceutical intermediates, to rapidly form complex ketones.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 (USA)
| | - Megan E. Hoerrner
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (USA)
| | - Mary P. Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (USA)
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 (USA)
| |
Collapse
|
24
|
Wang J, Hoerrner ME, Watson MP, Weix DJ. Nickel‐Catalyzed Synthesis of Dialkyl Ketones from the Coupling of N‐Alkyl Pyridinium Salts with Activated Carboxylic Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiang Wang
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| | - Megan E. Hoerrner
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Mary P. Watson
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Daniel J. Weix
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| |
Collapse
|
25
|
Davies AV, Fitzpatrick KP, Betori RC, Scheidt KA. Combined Photoredox and Carbene Catalysis for the Synthesis of Ketones from Carboxylic Acids. Angew Chem Int Ed Engl 2020; 59:9143-9148. [PMID: 32119162 PMCID: PMC7250732 DOI: 10.1002/anie.202001824] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/28/2020] [Indexed: 01/13/2023]
Abstract
As a key element in the construction of complex organic scaffolds, the formation of C-C bonds remains a challenge in the field of synthetic organic chemistry. Recent advancements in single-electron chemistry have enabled new methods for the formation of various C-C bonds. Disclosed herein is the development of a novel single-electron reduction of acyl azoliums for the formation of ketones from carboxylic acids. Facile construction of the acyl azolium in situ followed by a radical-radical coupling was made possible merging N-heterocyclic carbene (NHC) and photoredox catalysis. The utility of this protocol in synthesis was showcased in the late-stage functionalization of a variety of pharmaceutical compounds. Preliminary investigations using chiral NHCs demonstrate that enantioselectivity can be achieved, showcasing the advantages of this protocol over alternative methodologies.
Collapse
Affiliation(s)
- Anna V. Davies
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, Silverman Hall, Evanston, Illinois 60208
| | - Keegan P. Fitzpatrick
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, Silverman Hall, Evanston, Illinois 60208
| | - Rick C. Betori
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, Silverman Hall, Evanston, Illinois 60208
| | - Karl A. Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, Silverman Hall, Evanston, Illinois 60208
| |
Collapse
|
26
|
Bay AV, Fitzpatrick KP, Betori RC, Scheidt KA. Combined Photoredox and Carbene Catalysis for the Synthesis of Ketones from Carboxylic Acids**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001824] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Anna V. Bay
- Department of Chemistry Center for Molecular Innovation and Drug Discovery Northwestern University Silverman Hall Evanston IL 60208 USA
| | - Keegan P. Fitzpatrick
- Department of Chemistry Center for Molecular Innovation and Drug Discovery Northwestern University Silverman Hall Evanston IL 60208 USA
| | - Rick C. Betori
- Department of Chemistry Center for Molecular Innovation and Drug Discovery Northwestern University Silverman Hall Evanston IL 60208 USA
| | - Karl A. Scheidt
- Department of Chemistry Center for Molecular Innovation and Drug Discovery Northwestern University Silverman Hall Evanston IL 60208 USA
| |
Collapse
|
27
|
Donslund AS, Pedersen SS, Gaardbo C, Neumann KT, Kingston L, Elmore CS, Skrydstrup T. Direct Access to Isotopically Labeled Aliphatic Ketones Mediated by Nickel(I) Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Aske S. Donslund
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Simon S. Pedersen
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Cecilie Gaardbo
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Karoline T. Neumann
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Lee Kingston
- Isotope ChemistryEarly Chemical DevelopmentPharmaceutical Sciences, R&DAstraZeneca Pharmaceuticals 43183 Gothenberg Sweden
| | - Charles S. Elmore
- Isotope ChemistryEarly Chemical DevelopmentPharmaceutical Sciences, R&DAstraZeneca Pharmaceuticals 43183 Gothenberg Sweden
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| |
Collapse
|
28
|
Donslund AS, Pedersen SS, Gaardbo C, Neumann KT, Kingston L, Elmore CS, Skrydstrup T. Direct Access to Isotopically Labeled Aliphatic Ketones Mediated by Nickel(I) Activation. Angew Chem Int Ed Engl 2020; 59:8099-8103. [PMID: 32017346 DOI: 10.1002/anie.201916391] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/31/2020] [Indexed: 12/14/2022]
Abstract
An extensive range of functionalized aliphatic ketones with good functional-group tolerance has been prepared by a NiI -promoted coupling of either primary or secondary alkyl iodides with NN2 pincer NiII -acyl complexes. The latter were easily accessed from the corresponding NiII -alkyl complexes with stoichiometric CO. This Ni-mediated carbonylative coupling is adaptable to late-stage carbon isotope labeling, as illustrated by the preparation of isotopically labelled pharmaceuticals. Preliminary investigations suggest the intermediacy of carbon-centered radicals.
Collapse
Affiliation(s)
- Aske S Donslund
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Simon S Pedersen
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Cecilie Gaardbo
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Karoline T Neumann
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Lee Kingston
- Isotope Chemistry, Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca Pharmaceuticals, 43183, Gothenberg, Sweden
| | - Charles S Elmore
- Isotope Chemistry, Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca Pharmaceuticals, 43183, Gothenberg, Sweden
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|
29
|
Watanabe E, Chen Y, May O, Ley SV. A Practical Method for Continuous Production of sp3-Rich Compounds from (Hetero)Aryl Halides and Redox-Active Esters. Chemistry 2019; 26:186-191. [PMID: 31692149 DOI: 10.1002/chem.201905048] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 12/18/2022]
Abstract
A practically useful coupling reaction between aromatic halides and redox-active esters was realized by nickel catalysis through the use of a packed zinc bed column in continuous flow. Multiple reuse of the column showed a negligible decrease in efficiency, affording high space/time yields. A wide range of substrates, including a number of heteroaryl halides and polyfunctional materials were coupled in generally good yields. Longer-time and larger-scale experiments further demonstrates the robustness of the system.
Collapse
Affiliation(s)
- Eiichi Watanabe
- New Path Molecular Ltd., Building 580, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Yiding Chen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Oliver May
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Steven V Ley
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
30
|
Voutyritsa E, Kokotos CG. Green Metal‐Free Photochemical Hydroacylation of Unactivated Olefins. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Errika Voutyritsa
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Christoforos G. Kokotos
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| |
Collapse
|
31
|
Voutyritsa E, Kokotos CG. Green Metal‐Free Photochemical Hydroacylation of Unactivated Olefins. Angew Chem Int Ed Engl 2019; 59:1735-1741. [DOI: 10.1002/anie.201912214] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/30/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Errika Voutyritsa
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Christoforos G. Kokotos
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| |
Collapse
|