1
|
Nishad RC, Kumar S, Rit A. Self‐Assembly of a Bis‐NHC Ligand and Coinage Metal Ions: Unprecedented Metal‐Driven Chemistry between the Tri‐ and Tetranuclear Species. Angew Chem Int Ed Engl 2022; 61:e202206788. [DOI: 10.1002/anie.202206788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Rajeev C. Nishad
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| | - Shashi Kumar
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| | - Arnab Rit
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
2
|
Nishad RC, Kumar S, Rit A. Self‐Assembly of a Bis‐NHC Ligand and Coinage Metal Ions: Unprecedented Metal Driven Chemistry between the Tri‐ and Tetranuclear Species. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rajeev C. Nishad
- Indian Institute of Technology Madras Department of Chemistry INDIA
| | - Shashi Kumar
- Indian Institute of Technology Madras Department of Chemistry INDIA
| | - Arnab Rit
- Indian Institute of Technology, Madras Department of Chemistry Sardar patel Road 600036 Chennai INDIA
| |
Collapse
|
3
|
Gutiérrez‐Blanco A, Dobbe C, Hepp A, Daniliuc CG, Poyatos M, Hahn FE, Peris E. Synthesis and Characterization of Poly‐NHC‐Derived Silver(I) Assemblies and Their Transformation into Poly‐Imidazolium Macrocycles. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ana Gutiérrez‐Blanco
- Institut für Anorganische und Analytische Chemie Westfälische Wilhelms-Universität Münster Corrensstrasse 28–30 48149 Münster Germany
- Institute of Advanced Materials (INAM) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universitat Jaume I Avda Vicente Sos Baynat s/n 12071 Castellón Spain
| | - Christian Dobbe
- Institut für Anorganische und Analytische Chemie Westfälische Wilhelms-Universität Münster Corrensstrasse 28–30 48149 Münster Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie Westfälische Wilhelms-Universität Münster Corrensstrasse 28–30 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Macarena Poyatos
- Institute of Advanced Materials (INAM) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universitat Jaume I Avda Vicente Sos Baynat s/n 12071 Castellón Spain
| | - F. Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie Westfälische Wilhelms-Universität Münster Corrensstrasse 28–30 48149 Münster Germany
| | - Eduardo Peris
- Institute of Advanced Materials (INAM) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universitat Jaume I Avda Vicente Sos Baynat s/n 12071 Castellón Spain
| |
Collapse
|
4
|
Nishad RC, Rit A. Self-Assembly of Benzimidazole-Derived Tris-NHC Ligands and Ag I -Ions to Hexanuclear Organometallic Cages and Their Unusual Transmetalation Chemistry. Chemistry 2021; 27:594-599. [PMID: 33090631 DOI: 10.1002/chem.202003937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/30/2020] [Indexed: 01/08/2023]
Abstract
Multi-ligand self-assembly to attain the AgI -N-heterocyclic carbene (NHC)-built hexanuclear organometallic cages of composition [Ag6 (3 a,b)4 ](PF6 )6 from the reaction of benzimidazole-derived tris(azolium) salts [H3 -3 a,b](PF6 )3 with Ag2 O was achieved. The molecular structures of the cages were established by X-ray diffraction studies along with NMR and MS analyses. The existence of a single assembly in solution was supported by diffusion-ordered spectroscopy (DOSY) 1 H NMR spectra. Further, transmetalation reactions of these self-assembled complexes, [Ag6 (3 a,b)4 ](PF6 )6 , with CuI /AuI -ions provided various coinage metal-NHC complexes having diverse molecular compositions, which included the first example of a hexanuclear CuI -dodecacarbene complex, [Cu6 (3 b)4 ](PF6 )6 .
Collapse
Affiliation(s)
- Rajeev C Nishad
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
5
|
Guan S, Pickl T, Jandl C, Schuchmann L, Zhou X, Altmann PJ, Pöthig A. Triazolate-based pillarplexes: shape-adaptive metallocavitands via rim modification of macrocyclic ligands. Org Chem Front 2021. [DOI: 10.1039/d1qo00588j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Rim-modified pillarplexes are prepared by a macrocycle-templated synthesis strategy. They exhibit a shape-adaptive behaviour and complementary H-bonding, showing that rim modification can modulate the flexibility and functionality of the cavitand.
Collapse
Affiliation(s)
- Shengyang Guan
- Catalysis Research Center & Department of Chemistry
- Chair of Inorganic and Metal-Organic Chemistry
- Technische Universität München
- D-85748 Garching b. München
- Germany
| | - Thomas Pickl
- Catalysis Research Center & Department of Chemistry
- Chair of Inorganic and Metal-Organic Chemistry
- Technische Universität München
- D-85748 Garching b. München
- Germany
| | - Christian Jandl
- Catalysis Research Center & Department of Chemistry
- Chair of Inorganic and Metal-Organic Chemistry
- Technische Universität München
- D-85748 Garching b. München
- Germany
| | - Leon Schuchmann
- Catalysis Research Center & Department of Chemistry
- Chair of Inorganic and Metal-Organic Chemistry
- Technische Universität München
- D-85748 Garching b. München
- Germany
| | - Xiaoyu Zhou
- Catalysis Research Center & Department of Chemistry
- Chair of Inorganic and Metal-Organic Chemistry
- Technische Universität München
- D-85748 Garching b. München
- Germany
| | - Philipp J. Altmann
- Catalysis Research Center & Department of Chemistry
- Chair of Inorganic and Metal-Organic Chemistry
- Technische Universität München
- D-85748 Garching b. München
- Germany
| | - Alexander Pöthig
- Catalysis Research Center & Department of Chemistry
- Chair of Inorganic and Metal-Organic Chemistry
- Technische Universität München
- D-85748 Garching b. München
- Germany
| |
Collapse
|
6
|
Dobbe CB, Gutiérrez‐Blanco A, Tan TTY, Hepp A, Poyatos M, Peris E, Hahn FE. Template-Controlled Synthesis of Polyimidazolium Salts by Multiple [2+2] Cycloaddition Reactions. Chemistry 2020; 26:11565-11570. [PMID: 32237240 PMCID: PMC7540564 DOI: 10.1002/chem.202001515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 12/16/2022]
Abstract
The tetrakisimidazolium salt H4 -2(Br)4 , featuring a central benzene linker and 1,2,4,5-(nBu-imidazolium-Ph-CH=CH-) substituents reacts with Ag2 O in the presence of AgBF4 to yield the tetranuclear, oktakis-NHC assembly [3](BF4 )4 . Cation [3]4+ features four pairs of olefins from the two tetrakis-NHC ligands perfectly arranged for a subsequent [2+2] cycloaddition. Irradiation of [3](BF4 )4 with a high pressure Hg lamp connects the two tetra-NHC ligands through four cyclobutane linkers to give compound [4](BF4 )4 . Removal of the template metals yields the novel oktakisimidazolium salt H8 -5(BF4 )8 . The tetrakisimidazolium salt H4 -2(BF4 )4 and the oktakisimidazolium salt H8 -5(BF4 )8 have been used as multivalent anion receptors and their anion binding properties towards six different anions have been compared.
Collapse
Affiliation(s)
- Christian B. Dobbe
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 3048149MünsterGermany
| | - Ana Gutiérrez‐Blanco
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 3048149MünsterGermany
- Institute of Advanced Materials (INAM)Universitat Jaume IAvda. Vicente Sos Baynat s/nCastellon12071Spain
| | - Tristan T. Y. Tan
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 3048149MünsterGermany
| | - Alexander Hepp
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 3048149MünsterGermany
| | - Macarena Poyatos
- Institute of Advanced Materials (INAM)Universitat Jaume IAvda. Vicente Sos Baynat s/nCastellon12071Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM)Universitat Jaume IAvda. Vicente Sos Baynat s/nCastellon12071Spain
| | - F. Ekkehardt Hahn
- Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 3048149MünsterGermany
| |
Collapse
|
7
|
Hu FL, Qin Z, Wang MF, Kang XW, Qin YL, Wang Y, Chen SL, Young DJ, Mi Y. Modulating the regioselectivity of solid-state photodimerization in coordination polymer crystals. Dalton Trans 2020; 49:10858-10865. [PMID: 32716469 DOI: 10.1039/d0dt02038a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Coordination polymers [Cd(1,4-bpeb)(L1)] (1), [Zn2(1,4-bpeb)2(L2)2(SO42-)2] (2) and [Cd(1,4-bpeb)(L3)] (H2O) (3) (H2L1, 3-[2-(3-hydroxy-phenoxymethyl)-benzyloxy]-benzoic acid; HL2, 1H-Indazole-3-carboxylic acid; H3L3, benzene-1,2,3-tricarboxylic acid; 1,4-bpeb, 1,4-bis[2-(4-pyridyl)vinyl]benzene have been synthesized under solvothermal conditions. Complexes 1-3 underwent photodimerization in the solid-state to give quantitative yields of single isomeric products. The choice of carboxyl ligands L and metal center determined the arrangement of 1,4-bpeb ligands, which in turn directed the regiochemistry of the final photoproducts. The solid-state network structures of cadmium based 1 and 3 had 1,4-bpeb pairs aligned face-to-face with both C[double bond, length as m-dash]C centres in each ligand at an appropriate distance and alignment for photodimerization to give the corresponding para-[2.2]cyclophane (pCP) exclusively. By contrast, compound 2 possessed dinuclear (ZnSO4)2 metallocycles that positioned the 1,4-bpeb "arms" face-to-face, but with C[double bond, length as m-dash]C centres offset at an appropriate distance for only one pair to undergo [2 + 2] cycloaddition to yield a single stereoisomer of the monocyclobutane photo-product bpbpvpcb. This work highlights crystal engineering design principles that can be used to facilitate regio- and stereospecificity in solid-state transformations.
Collapse
Affiliation(s)
- Fei-Long Hu
- Guangxi Key laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, P.R. China. and Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, P.R. China
| | - Zhen Qin
- Guangxi Key laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, P.R. China.
| | - Meng-Fan Wang
- Guangxi Key laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, P.R. China.
| | - Xue Wan Kang
- Guangxi Key laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, P.R. China.
| | - Yong-Li Qin
- Guangxi Key laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, P.R. China.
| | - Yong Wang
- Guangxi Key laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, P.R. China.
| | - Shu-Li Chen
- Guangxi Key laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, P.R. China.
| | - David James Young
- College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia
| | - Yan Mi
- Guangxi Key laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, P.R. China.
| |
Collapse
|
8
|
Gou X, Liu T, Wang Y, Han Y. Ultrastable and Highly Catalytically Active N‐Heterocyclic‐Carbene‐Stabilized Gold Nanoparticles in Confined Spaces. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xing‐Xing Gou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Tong Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| |
Collapse
|
9
|
Gou XX, Liu T, Wang YY, Han YF. Ultrastable and Highly Catalytically Active N-Heterocyclic-Carbene-Stabilized Gold Nanoparticles in Confined Spaces. Angew Chem Int Ed Engl 2020; 59:16683-16689. [PMID: 32533619 DOI: 10.1002/anie.202006569] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 12/13/2022]
Abstract
Controlling the size and surface functionalization of nanoparticles (NPs) can lead to improved properties and applicability. Herein, we demonstrate the efficiency of the metal-carbene template approach (MCTA) to synthesize highly robust and soluble three-dimensional polyimidazolium cages (PICs) of different sizes, each bearing numerous imidazolium groups, and use these as templates to synthesize and stabilize catalytically active, cavity-hosted, dispersed poly-N-heterocyclic carbene (NHC)-anchored gold NPs. Owing to the stabilization of the NHC ligands and the effective confinement of the cage cavities, the as-prepared poly-NHC-shell-encapsulated AuNPs displayed promising stability towards heat, pH, and chemical regents. Most notably, all the Au@PCCs (PCC=polycarbene cage) exhibited excellent catalytic activities in various chemical reactions, together with high stability and durability.
Collapse
Affiliation(s)
- Xing-Xing Gou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Tong Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
10
|
Mao M, Zhang M, Meng D, Chen J, He C, Huang Y, Cao R. Imidazolium‐Functionalized Cationic Covalent Triazine Frameworks Stabilized Copper Nanoparticles for Enhanced CO
2
Electroreduction. ChemCatChem 2020. [DOI: 10.1002/cctc.202000387] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Min‐Jie Mao
- College of Chemistry and Materials ScienceFujian Normal University Fuzhou Fujian P. R. China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian P. R. China
- Fujian CollegeUniversity of Chinese Academy of Sciences Fuzhou Fujian P. R. China
| | - Meng‐Di Zhang
- College of Chemistry and Materials ScienceFujian Normal University Fuzhou Fujian P. R. China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian P. R. China
- Fujian CollegeUniversity of Chinese Academy of Sciences Fuzhou Fujian P. R. China
| | - Dong‐Li Meng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian P. R. China
- University of Chinese Academy of Sciences Beijing China
| | - Jian‐Xin Chen
- College of Chemistry and Materials ScienceFujian Normal University Fuzhou Fujian P. R. China
| | - Chang He
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian P. R. China
- University of Chinese Academy of Sciences Beijing China
| | - Yuan‐Biao Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian P. R. China
- Fujian CollegeUniversity of Chinese Academy of Sciences Fuzhou Fujian P. R. China
- University of Chinese Academy of Sciences Beijing China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian P. R. China
- Fujian CollegeUniversity of Chinese Academy of Sciences Fuzhou Fujian P. R. China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
11
|
Hua K, An Y, Wang Y, Han Y. Supramolecular Construction of a [16]‐Imidazolium Cage via a Quadruple [2+2] Photocycloaddition and Its Selective Fluorescent Recognition of Pyranine (HPTS). Chemistry 2020; 26:7190-7193. [DOI: 10.1002/chem.202001138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Kai Hua
- Key Laboratory of Synthetic and Natural Functional Molecule of the, Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule of the, Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the, Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the, Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710127 P. R. China
| |
Collapse
|
12
|
Xu L, Zhang D, Ronson TK, Nitschke JR. Improved Acid Resistance of a Metal-Organic Cage Enables Cargo Release and Exchange between Hosts. Angew Chem Int Ed Engl 2020; 59:7435-7438. [PMID: 32073709 PMCID: PMC7217015 DOI: 10.1002/anie.202001059] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 01/06/2023]
Abstract
The use of di(2-pyridyl)ketone in subcomponent self-assembly is introduced. When combined with a flexible triamine and zinc bis(trifluoromethanesulfonyl)imide, this ketone formed a new Zn4 L4 tetrahedron 1 bearing twelve uncoordinated pyridyl units around its metal-ion vertices. The acid stability of 1 was found to be greater than that of the analogous tetrahedron 2 built from 2-formylpyridine. Intriguingly, the peripheral presence of additional pyridine rings in 1 resulted in distinct guest binding behavior from that of 2, affecting guest scope as well as binding affinities. The different stabilities and guest affinities of capsules 1 and 2 enabled the design of systems whereby different cargoes could be moved between cages using acid and base as chemical stimuli.
Collapse
Affiliation(s)
- Lin Xu
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University3663 N. Zhongshan RoadShanghai200062P. R. China
| | - Dawei Zhang
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Tanya K. Ronson
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | |
Collapse
|
13
|
Xu L, Zhang D, Ronson TK, Nitschke JR. Improved Acid Resistance of a Metal–Organic Cage Enables Cargo Release and Exchange between Hosts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lin Xu
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Dawei Zhang
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Tanya K. Ronson
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jonathan R. Nitschke
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
14
|
Chen L, Chen C, Sun Y, Lu S, Huo H, Tan T, Li A, Li X, Ungar G, Liu F, Zhang M. Luminescent Metallacycle‐Cored Liquid Crystals Induced by Metal Coordination. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Long Chen
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Changlong Chen
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yue Sun
- Hubei Key Laboratory of Catalysis and Materials ScienceCollege of Chemistry and Material SciencesSouth-Central University for Nationalities Wuhan 430074 P. R. China
| | - Shuai Lu
- Department of ChemistryUniversity of South Florida Tampa FL 33620 USA
- College of ChemistryZhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Haohui Huo
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Tianyi Tan
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Anquan Li
- School of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xiaopeng Li
- Department of ChemistryUniversity of South Florida Tampa FL 33620 USA
| | - Goran Ungar
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Feng Liu
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
15
|
Chen L, Chen C, Sun Y, Lu S, Huo H, Tan T, Li A, Li X, Ungar G, Liu F, Zhang M. Luminescent Metallacycle-Cored Liquid Crystals Induced by Metal Coordination. Angew Chem Int Ed Engl 2020; 59:10143-10150. [PMID: 32080962 DOI: 10.1002/anie.201915055] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/07/2020] [Indexed: 12/31/2022]
Abstract
Two rhomboidal metallacycles based on metal-coordination-driven self-assembly are presented. Because metal-coordination interactions restrict the rotation of phenyl groups on tetraphenylethene units, these metallacycles were emissive both in solution and in solid state, and their aggregation-induced emission properties were well-retained. Moreover, the rhomboidal metallacyclic structures offer a platform for intermolecular packing beneficial for the formation of liquid crystalline phases. Therefore, although neither of building blocks shows mesogenic properties, both thermotropic and lyotropic (in DMF) mesophases were observed in one of metallacycles, indicating that mesophases could be induced by metal-coordination interactions. This study not only reveals the mechanism for the formation of cavity-cored liquid crystals, but also provides a convenient approach to preparing supramolecular luminescent liquid crystals, which will serve as good candidates for chemo sensors and liquid crystal displays.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Changlong Chen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yue Sun
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Shuai Lu
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.,College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Haohui Huo
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tianyi Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Anquan Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Goran Ungar
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|