1
|
Guo C, Chadwick RJ, Foulis A, Bedendi G, Lubskyy A, Rodriguez KJ, Pellizzoni MM, Milton RD, Beveridge R, Bruns N. Peroxidase Activity of Myoglobin Variants Reconstituted with Artificial Cofactors. Chembiochem 2022; 23:e202200197. [PMID: 35816250 PMCID: PMC9545363 DOI: 10.1002/cbic.202200197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Indexed: 02/02/2023]
Abstract
Myoglobin (Mb) can react with hydrogen peroxide (H2 O2 ) to form a highly active intermediate compound and catalyse oxidation reactions. To enhance this activity, known as pseudo-peroxidase activity, previous studies have focused on the modification of key amino acid residues of Mb or the heme cofactor. In this work, the Mb scaffold (apo-Mb) was systematically reconstituted with a set of cofactors based on six metal ions and two ligands. These Mb variants were fully characterised by UV-Vis spectroscopy, circular dichroism (CD) spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS) and native mass spectrometry (nMS). The steady-state kinetics of guaiacol oxidation and 2,4,6-trichlorophenol (TCP) dehalogenation catalysed by Mb variants were determined. Mb variants with iron chlorin e6 (Fe-Ce6) and manganese chlorin e6 (Mn-Ce6) cofactors were found to have improved catalytic efficiency for both guaiacol and TCP substrates in comparison with wild-type Mb, i. e. Fe-protoporphyrin IX-Mb. Furthermore, the selected cofactors were incorporated into the scaffold of a Mb mutant, swMb H64D. Enhanced peroxidase activity for both substrates were found via the reconstitution of Fe-Ce6 into the mutant scaffold.
Collapse
Affiliation(s)
- Chao Guo
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Robert J. Chadwick
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Adam Foulis
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Giada Bedendi
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
| | - Andriy Lubskyy
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Kyle J. Rodriguez
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Michela M. Pellizzoni
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Ross D. Milton
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
| | - Rebecca Beveridge
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Nico Bruns
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK,Department of ChemistryTechnical University of DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| |
Collapse
|
2
|
Liu Y, Lai KL, Vong K. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yifei Liu
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Ka Lun Lai
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Kenward Vong
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
3
|
Gu Y, Bloomer BJ, Liu Z, Chen R, Clark DS, Hartwig JF. Directed Evolution of Artificial Metalloenzymes in Whole Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang Gu
- Department of Chemistry University of California Berkeley CA 94720 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
- Present address: CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Brandon J. Bloomer
- Department of Chemistry University of California Berkeley CA 94720 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Zhennan Liu
- Department of Chemistry University of California Berkeley CA 94720 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Reichi Chen
- Department of Chemistry University of California Berkeley CA 94720 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Douglas S. Clark
- Department of Chemical and Biomolecular Engineering University of California Berkeley CA 94720 USA
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - John F. Hartwig
- Department of Chemistry University of California Berkeley CA 94720 USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| |
Collapse
|
4
|
Gu Y, Bloomer BJ, Liu Z, Chen R, Clark DS, Hartwig JF. Directed Evolution of Artificial Metalloenzymes in Whole Cells. Angew Chem Int Ed Engl 2022; 61:e202110519. [PMID: 34766418 PMCID: PMC9707807 DOI: 10.1002/anie.202110519] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/15/2021] [Indexed: 01/28/2023]
Abstract
Artificial metalloenzymes (ArMs), created by introducing synthetic cofactors into protein scaffolds, are an emerging class of catalyst for non-natural reactions. Although many classes of ArMs are known, in vitro reconstitution of cofactors and proteins has been a limiting step in the high-throughput screening and directed evolution of ArMs because purification of individual host proteins is time-consuming. We describe the application of a platform to combine mutants of the P450 enzyme CYP119 and the cofactor Ir(Me)MPIX in vivo, by coexpression of the CYP119 mutants with the heme transporter encoded by the hug operon, to the directed evolution of ArMs containing Ir(Me)MPIX in whole cells. We applied this platform to the development an ArMs catalyzing the insertion of the acyclic carbene from α-diazopropanoate esters (Me-EDA) into the N-H bonds of N-alkyl anilines, a combination of carbene and amine classes for which mutant enzymes of natural hemoproteins previously reacted with low enantioselectivity. The mutants of the artificial metalloenzyme Ir(Me)CYP119 identified by an evolution campaign involving more than 4000 mutants are shown to catalyze the reaction of Me-EDA with N-methyl anilines to form chiral chiral amino esters with high TON and good enantioselectivity, thereby demonstrating that the directed evolution of ArMs can rival that of natural enzymes in vivo.
Collapse
Affiliation(s)
- Yang Gu
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Present address: CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Brandon J Bloomer
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Zhennan Liu
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Reichi Chen
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| |
Collapse
|