1
|
Zafar H, Liu B, Nguyen HVT, Johnson JA. Caspase-3-Responsive, Fluorogenic Bivalent Bottlebrush Polymers. ACS Macro Lett 2024; 13:571-576. [PMID: 38647178 DOI: 10.1021/acsmacrolett.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Controlling the access of proteases to cleavable peptides placed at specific locations within macromolecular architectures represents a powerful strategy for biologically responsive materials design. Here, we report the synthesis of peptide-containing bivalent bottlebrush (co)polymers (BBPs) featuring polyethylene glycol (PEG) and 7-amino-4-methylcoumarin (AMC) pendants on each backbone repeat unit. The AMCs are linked via caspase-3-cleavable peptides which, upon enzymatic cleavage, provide a "turn-on" fluorescence signal due to the release of free AMC. Time-dependent fluorscence measurements demonstrate that the caspase-3-induced peptide cleavage and AMC release from BBPs is strongly dependent on the BBP backbone length and the AMC-peptide linker location within the BBP architecture, revealing fundamental insights into the interactions of enzymes with BBPs.
Collapse
Affiliation(s)
- Hadiqa Zafar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bin Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hung V-T Nguyen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Choi W, Sun H, Battistella C, Berger O, Vratsanos MA, Wang MM, Gianneschi NC. Biomolecular Densely Grafted Brush Polymers: Oligonucleotides, Oligosaccharides and Oligopeptides. Angew Chem Int Ed Engl 2020; 59:19762-19772. [PMID: 32436259 PMCID: PMC11042487 DOI: 10.1002/anie.202005379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 01/19/2023]
Abstract
In this Minireview, we describe synthetic polymers densely functionalized with sequence-defined biomolecular sidechains. We focus on synthetic brush polymers of oligonucleotides, oligosaccharides, and oligopeptides, prepared via graft-through polymerization from biomolecule functionalized monomers. The resulting structures are brush polymers wherein a biomolecular graft is positioned at each monomer backbone unit. We describe key synthetic milestones, identify synthetic opportunities, and highlight recent advances in the field, including biological applications.
Collapse
Affiliation(s)
- Wonmin Choi
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Hao Sun
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Claudia Battistella
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Or Berger
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Maria A. Vratsanos
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Max M. Wang
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Nathan C. Gianneschi
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| |
Collapse
|
3
|
Choi W, Sun H, Battistella C, Berger O, Vratsanos MA, Wang MM, Gianneschi NC. Biomolecular Densely Grafted Brush Polymers: Oligonucleotides, Oligosaccharides and Oligopeptides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wonmin Choi
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Hao Sun
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Claudia Battistella
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Or Berger
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Maria A. Vratsanos
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Max M. Wang
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Nathan C. Gianneschi
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| |
Collapse
|
4
|
Sun H, Cao W, Zang N, Clemons TD, Scheutz GM, Hu Z, Thompson MP, Liang Y, Vratsanos M, Zhou X, Choi W, Sumerlin BS, Stupp SI, Gianneschi NC. Proapoptotic Peptide Brush Polymer Nanoparticles via Photoinitiated Polymerization-Induced Self-Assembly. Angew Chem Int Ed Engl 2020; 59:19136-19142. [PMID: 32659039 PMCID: PMC7722202 DOI: 10.1002/anie.202006385] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Herein, we report the photoinitiated polymerization-induced self-assembly (photo-PISA) of spherical micelles consisting of proapoptotic peptide-polymer amphiphiles. The one-pot synthetic approach yielded micellar nanoparticles at high concentrations and at scale (150 mg mL-1 ) with tunable peptide loadings up to 48 wt. %. The size of the micellar nanoparticles was tuned by varying the lengths of hydrophobic and hydrophilic building blocks. Critically, the peptide-functionalized nanoparticles imbued the proapoptotic "KLA" peptides (amino acid sequence: KLAKLAKKLAKLAK) with two key properties otherwise not inherent to the sequence: 1) proteolytic resistance compared to the oligopeptide alone; 2) significantly enhanced cell uptake by multivalent display of KLA peptide brushes. The result was demonstrated improved apoptosis efficiency in HeLa cells. These results highlight the potential of photo-PISA in the large-scale synthesis of functional, proteolytically resistant peptide-polymer conjugates for intracellular delivery.
Collapse
Affiliation(s)
- Hao Sun
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Wei Cao
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Nanzhi Zang
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Tristan D Clemons
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL, 60611, USA
| | - Georg M Scheutz
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Ziying Hu
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Matthew P Thompson
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yifei Liang
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Maria Vratsanos
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Xuhao Zhou
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Wonmin Choi
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Samuel I Stupp
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL, 60611, USA
- Department of Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Pharmacology, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL, 60611, USA
| |
Collapse
|
5
|
Sun H, Cao W, Zang N, Clemons TD, Scheutz GM, Hu Z, Thompson MP, Liang Y, Vratsanos M, Zhou X, Choi W, Sumerlin BS, Stupp SI, Gianneschi NC. Proapoptotic Peptide Brush Polymer Nanoparticles via Photoinitiated Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hao Sun
- Department of Chemistry Department of Materials Science & Engineering Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
| | - Wei Cao
- Department of Chemistry Department of Materials Science & Engineering Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
| | - Nanzhi Zang
- Department of Chemistry Department of Materials Science & Engineering Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
| | - Tristan D. Clemons
- Department of Chemistry Department of Materials Science & Engineering Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
- Simpson Querrey Institute Northwestern University 303 East Superior Street Chicago IL 60611 USA
| | - Georg M. Scheutz
- George & Josephine Butler Polymer Research Laboratory Center for Macromolecular Science & Engineering Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Ziying Hu
- Department of Chemistry Department of Materials Science & Engineering Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
| | - Matthew P. Thompson
- Department of Chemistry Department of Materials Science & Engineering Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
| | - Yifei Liang
- Department of Chemistry Department of Materials Science & Engineering Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
| | - Maria Vratsanos
- Department of Chemistry Department of Materials Science & Engineering Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
| | - Xuhao Zhou
- Department of Chemistry Department of Materials Science & Engineering Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
| | - Wonmin Choi
- Department of Chemistry Department of Materials Science & Engineering Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory Center for Macromolecular Science & Engineering Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Samuel I. Stupp
- Department of Chemistry Department of Materials Science & Engineering Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
- Simpson Querrey Institute Northwestern University 303 East Superior Street Chicago IL 60611 USA
- Department of Medicine Northwestern University Evanston IL 60208 USA
| | - Nathan C. Gianneschi
- Department of Chemistry Department of Materials Science & Engineering Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
- Department of Pharmacology International Institute for Nanotechnology Chemistry of Life Processes Institute Northwestern University Evanston IL 60208 USA
- Simpson Querrey Institute Northwestern University 303 East Superior Street Chicago IL 60611 USA
| |
Collapse
|