1
|
Shi Y, Li C, Di J, Xue Y, Jia Y, Duan J, Hu X, Tian Y, Li Y, Sun C, Zhang N, Xiong Y, Jin T, Chen P. Polycationic Open-Shell Cyclophanes: Synthesis of Electron-Rich Chiral Macrocycles, and Redox-Dependent Electronic States. Angew Chem Int Ed Engl 2024; 63:e202402800. [PMID: 38411404 DOI: 10.1002/anie.202402800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
π-Conjugated chiral nanorings with intriguing electronic structures and chiroptical properties have attracted considerable interests in synthetic chemistry and materials science. We present the design principles to access new chiral macrocycles (1 and 2) that are essentially built on the key components of main-group electron-donating carbazolyl moieties or the π-expanded aza[7]helicenes. Both macrocycles show the unique molecular conformations with a (quasi) figure-of-eight topology as a result of the conjugation patterns of 2,2',7,7'-spirobifluorenyl in 1 and triarylamine-coupled aza[7]helicene-based building blocks in 2. This electronic nature of redox-active, carbazole-rich backbones enabled these macrocycles to be readily oxidized chemically and electrochemically, leading to the sequential production of a series of positively charged polycationic open-shell cyclophanes. Their redox-dependent electronic states of the resulting multispin polyradicals have been characterized by VT-ESR, UV/Vis-NIR absorption and spectroelectrochemical measurements. The singlet (ΔES-T=-1.29 kcal mol-1) and a nearly degenerate singlet-triplet ground state (ΔES-T(calcd)=-0.15 kcal mol-1 and ΔES-T(exp)=0.01 kcal mol-1) were proved for diradical dications 12+2⋅ and 22+2⋅, respectively. Our work provides an experimental proof for the construction of electron-donating new chiral nanorings, and more importantly for highly charged polyradicals with potential applications in chirospintronics and organic conductors.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yuting Xue
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xiaoyu Hu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yu Tian
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yanqiu Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Cuiping Sun
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Niu Zhang
- Analysis and Testing Centre, Beijing Institute of Technology, 102488, Beijing, China
| | - Yan Xiong
- Analysis and Testing Centre, Beijing Institute of Technology, 102488, Beijing, China
| | - Tianyun Jin
- Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography University of California, San Diego La Jolla, 92093, USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|
2
|
Shang W, Zhu X, Jiang Y, Cui J, Liu K, Li T, Liu M. Self‐Assembly of Macrocyclic Triangles into Helicity‐Opposite Nanotwists by Competitive Planar over Point Chirality. Angew Chem Int Ed Engl 2022; 61:e202210604. [DOI: 10.1002/anie.202210604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Weili Shang
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
| | - Jie Cui
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Kaiang Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Minghua Liu
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
3
|
Garci A, Abid S, David AHG, Codesal MD, Đorđević L, Young RM, Sai H, Le Bras L, Perrier A, Ovalle M, Brown PJ, Stern CL, Campaña AG, Stupp SI, Wasielewski MR, Blanco V, Stoddart JF. Aggregation-Induced Emission and Circularly Polarized Luminescence Duality in Tetracationic Binaphthyl-Based Cyclophanes. Angew Chem Int Ed Engl 2022; 61:e202208679. [PMID: 35904930 PMCID: PMC9804443 DOI: 10.1002/anie.202208679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/05/2023]
Abstract
Here, we report an approach to the synthesis of highly charged enantiopure cyclophanes by the insertion of axially chiral enantiomeric binaphthyl fluorophores into the constitutions of pyridinium-based macrocycles. Remarkably, these fluorescent tetracationic cyclophanes exhibit a significant AIE compared to their neutral optically active binaphthyl precursors. A combination of theoretical calculations and time-resolved spectroscopy reveal that the AIE originates from limited torsional vibrations associated with the axes of chirality present in the chiral enantiomeric binaphthyl units and the fine-tuning of their electronic landscape when incorporated within the cyclophane structure. Furthermore, these highly charged enantiopure cyclophanes display CPL responses both in solution and in the aggregated state. This unique duality of AIE and CPL in these tetracationic cyclophanes is destined to be of major importance in future development of photonic devices and bio-applications.
Collapse
Affiliation(s)
- Amine Garci
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Seifallah Abid
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Arthur H. G. David
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Marcos D. Codesal
- Departamento de Química OrgánicaFacultad de CienciasUnidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ)Universidad de Granada (UGR)Avda. Fuente Nueva S/N18071GranadaSpain
| | - Luka Đorđević
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Center for Bio-inspired Energy ScienceNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Ryan M. Young
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Institute for Sustainability and Energy at NorthwesternNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Hiroaki Sai
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Simpson Querrey Institute for BioNanotechnologyNorthwestern University303 E. Superior StreetChicagoIL 60611USA
- Department of Materials Science and EngineeringNorthwestern University2220 Campus DriveEvanstonIL 60208USA
| | - Laura Le Bras
- Laboratoire Chrono-environnement (UMR 6249)Université de Bourgogne Franche-Comté16 route de Gray25030BesançonFrance
| | - Aurélie Perrier
- Chimie Paris TechPSL Research UniversityCNRSInstitute of Chemistry for Life and Health Sciences (i-CLeHS)UMR 806075005ParisFrance
- Université Paris Cité75006ParisFrance
| | - Marco Ovalle
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Paige J. Brown
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Institute for Sustainability and Energy at NorthwesternNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Charlotte L. Stern
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Araceli G. Campaña
- Departamento de Química OrgánicaFacultad de CienciasUnidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ)Universidad de Granada (UGR)Avda. Fuente Nueva S/N18071GranadaSpain
| | - Samuel I. Stupp
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Center for Bio-inspired Energy ScienceNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Simpson Querrey Institute for BioNanotechnologyNorthwestern University303 E. Superior StreetChicagoIL 60611USA
- Department of Materials Science and EngineeringNorthwestern University2220 Campus DriveEvanstonIL 60208USA
- Department of Biomedical EngineeringNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Department of MedicineNorthwestern University676N St. Clair StreetChicagoIL 60611USA
| | - Michael R. Wasielewski
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Institute for Sustainability and Energy at NorthwesternNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Victor Blanco
- Departamento de Química OrgánicaFacultad de CienciasUnidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ)Universidad de Granada (UGR)Avda. Fuente Nueva S/N18071GranadaSpain
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| |
Collapse
|
4
|
Hasegawa M, Hasegawa C, Nagaya Y, Tsubaki K, Mazaki Y. Multiply Twisted Chiral Macrocycles Clamped by Tethered Binaphthyls Exhibiting High Circularly Polarized Luminescence Brightness. Chemistry 2022; 28:e202202218. [DOI: 10.1002/chem.202202218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Masashi Hasegawa
- Graduate School of Science Kitasato University Sagamihara Kanagawa 252-0373 Japan
| | - Chika Hasegawa
- Graduate School of Science Kitasato University Sagamihara Kanagawa 252-0373 Japan
| | - Yuki Nagaya
- Graduate School of Life and Environmental Sciences Kyoto Prefectural University 1-5 Shimogamo Hangi-cho, Sakyo-ku Kyoto 606-8522 Japan
| | - Kazunori Tsubaki
- Graduate School of Life and Environmental Sciences Kyoto Prefectural University 1-5 Shimogamo Hangi-cho, Sakyo-ku Kyoto 606-8522 Japan
| | - Yasuhiro Mazaki
- Graduate School of Science Kitasato University Sagamihara Kanagawa 252-0373 Japan
| |
Collapse
|
5
|
Kato K, Kurakake Y, Ohtani S, Fa S, Gon M, Tanaka K, Ogoshi T. Discrete Macrocycles with Fixed Chirality and Two Distinct Sides: Dipole‐Dependent Chiroptical Response. Angew Chem Int Ed Engl 2022; 61:e202209222. [DOI: 10.1002/anie.202209222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Yuta Kurakake
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Masayuki Gon
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
- WPI Nano Life Science Institute Kanazawa University Kakuma-machi Kanazawa, 920-1192 Japan
| |
Collapse
|
6
|
Malinčík J, Gaikwad S, Mora‐Fuentes JP, Boillat M, Prescimone A, Häussinger D, Campaña AG, Šolomek T. Circularly Polarized Luminescence in a Möbius Helicene Carbon Nanohoop**. Angew Chem Int Ed Engl 2022; 61:e202208591. [PMID: 35856293 PMCID: PMC9543836 DOI: 10.1002/anie.202208591] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/13/2022]
Abstract
We present the first helicene carbon nanoohop that integrates a [6]helicene into [7]cycloparaphenylene. The [6]helicene endows the helicene carbon nanohoop with chiroptical properties and configurational stability typical for higher helicenes, while the radially conjugated seven para‐phenylenes largely determine the optoelectronic properties. The structure of the helicene carbon nanoohop was unambiguously characterized by NMR, MS and X‐ray analysis that revealed that it possesses a topology of a Möbius strip in the solid state and in solution. The chirality transfers from the [6]helicene to the para‐phenylenes and leads to a pronounced circular dichroism and bright circularly polarized luminescence, which is affected by the structural topology of the nanohoop.
Collapse
Affiliation(s)
- Juraj Malinčík
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
- Prievidza Chemical Society M. Hodžu 10/16 971 01 Prievidza Slovakia
| | - Sudhakar Gaikwad
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
| | - Juan P. Mora‐Fuentes
- Department of Organic Chemistry University of Granada Avda Fuentenueva, s/n 18 071 Granada Spain
| | - Marc‐Aurèle Boillat
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
| | - Alessandro Prescimone
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
| | - Daniel Häussinger
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
| | - Araceli G. Campaña
- Department of Organic Chemistry University of Granada Avda Fuentenueva, s/n 18 071 Granada Spain
| | - Tomáš Šolomek
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
- Department of Chemistry Biochemistry and Pharamaceutical Sciences University of Bern Freiestrasse 3 3012 Bern Switzerland
- Prievidza Chemical Society M. Hodžu 10/16 971 01 Prievidza Slovakia
| |
Collapse
|
7
|
Shang W, Zhu X, Jiang Y, Cui J, Liu K, Li T, Liu M. Self‐Assembly of Macrocyclic Triangles into Helicity‐Opposite Nanotwists by Competitive Planar over Point Chirality. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weili Shang
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Xuefeng Zhu
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics CHINA
| | - Yuqian Jiang
- National Center for Nanoscience and Nanotechnology: National Center for Nanoscience and Technology Key laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Jie Cui
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) CHINA
| | - Kaiang Liu
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) CHINA
| | - Tiesheng Li
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Minghua Liu
- Institute of Chemistry, CAS Laboratory of Colloid and Interface Scie Zhong Guancun 100080 Beijing CHINA
| |
Collapse
|
8
|
Garci A, Abid S, David AHG, Codesal MD, Đorđević L, Young RM, sai H, le_bras L, pineau AP, ovalle M, brown P, Stern CL, Campaña AG, Stupp SI, Wasielewski MR, blancos V, Stoddart F. Aggregation Induced Emission and Circularly Polarized Luminescence Duality in Tetracationic Binaphthyl‐Based Cyclophanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Amine Garci
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Seifallah Abid
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Arthur H. G. David
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Marcos D Codesal
- Universidad de Granada Departamento de Química Orgánica Avda. Fuente Nueva S/N 18071 Granada SPAIN
| | - Luka Đorđević
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Ryan M Young
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - hiroaki sai
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - laura le_bras
- Université de Franche-Comté: Universite de Franche-Comte Department of Chemistry 16 route de Gray, 25030 Besançon FRANCE
| | - aurelie perrier pineau
- Chimie ParisTech - PSL: Ecole nationale superieure de chimie de Paris Department of Chemistry FRANCE
| | - marco ovalle
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - paige brown
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Charlotte L Stern
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | | | - Samuel I Stupp
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Michael R Wasielewski
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - victor blancos
- Universidad de Granada Departamento de Química Orgánica SPAIN
| | - Fraser Stoddart
- Northwestern University Department of Chemistry 2145 Sheridan Road 60208-3113 EVANSTON UNITED STATES
| |
Collapse
|
9
|
Malinčík J, Gaikwad S, Mora-Fuentes JP, Boillat MA, Prescimone A, Häussinger D, Campaña AG, Šolomek T. Circularly Polarized Luminescence in a Möbius Helicene Carbon Nanohoop. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Juraj Malinčík
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Sudhakar Gaikwad
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Juan P. Mora-Fuentes
- University of Granada: Universidad de Granada Department of Organic Chemistry SPAIN
| | | | | | - Daniel Häussinger
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Araceli G. Campaña
- University of Granada: Universidad de Granada Department of Organic Chemistry SPAIN
| | - Tomáš Šolomek
- University of Bern: Universitat Bern Department of Chemistry, Biochemistry and Pharmaceutical Sciences Freiestrasse 3 3012 Bern SWITZERLAND
| |
Collapse
|
10
|
Kato K, Kurakake Y, Ohtani S, Fa S, Gon M, Tanaka K, Ogoshi T. Discrete Macrocycles with Fixed Chirality and Two Distinct Sides: Dipole‐Dependent Chiroptical Response. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kenichi Kato
- Kyoto University Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering KatsuraNishikyo-ku 615-8510 Kyoto JAPAN
| | - Yuta Kurakake
- Kyoto University: Kyoto Daigaku Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering JAPAN
| | - Shunsuke Ohtani
- Kyoto University: Kyoto Daigaku Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering JAPAN
| | - Shixin Fa
- Kyoto University: Kyoto Daigaku Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering JAPAN
| | - Masayuki Gon
- Kyoto University: Kyoto Daigaku Department of Polymer Chemistry, Graduate School of Engineering JAPAN
| | - Kazuo Tanaka
- Kyoto University: Kyoto Daigaku Department of Polymer Chemistry, Graduate School of Engineering JAPAN
| | - Tomoki Ogoshi
- Kyoto University: Kyoto Daigaku Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering JAPAN
| |
Collapse
|
11
|
Takaishi K, Murakami S, Yoshinami F, Ema T. Binaphthyl‐Bridged Pyrenophanes: Intense Circularly Polarized Luminescence Based on a
D
2
Symmetry Strategy. Angew Chem Int Ed Engl 2022; 61:e202204609. [DOI: 10.1002/anie.202204609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| | - Sho Murakami
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| | - Fumiya Yoshinami
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| | - Tadashi Ema
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| |
Collapse
|
12
|
Binaphthyl‐Bridged Pyrenophanes: Intense Circularly Polarized Luminescence Based on a D2 Symmetry Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Nogami J, Nagashima Y, Sugiyama H, Miyamoto K, Tanaka Y, Uekusa H, Muranaka A, Uchiyama M, Tanaka K. Synthesis of Cyclophenacene‐ and Chiral‐Type Cyclophenylene‐Naphthylene Belts. Angew Chem Int Ed Engl 2022; 61:e202200800. [DOI: 10.1002/anie.202200800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Juntaro Nogami
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| | | | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Yusuke Tanaka
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Hidehiro Uekusa
- Department of Chemistry Tokyo Institute of Technology O-okayama Meguro-ku Tokyo 152-8550 Japan
| | - Atsuya Muranaka
- Advanced Elements Chemistry Laboratory Cluster for Pioneering Research (CPR) RIKEN 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| |
Collapse
|
14
|
Wang J, Shi H, Wang S, Zhang X, Fang P, Zhou Y, Zhuang G, Shao X, Du P. Tuning the (Chir)Optical Properties and Squeezing out the Inherent Chirality in Polyphenylene‐Locked Helical Carbon Nanorings. Chemistry 2022; 28:e202103828. [DOI: 10.1002/chem.202103828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 01/07/2023]
Affiliation(s)
- Jinyi Wang
- Hefei National Laboratory of Physical Science at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 P.R. China
| | - Hong Shi
- Department of Chemical Physics CAS Key Laboratory of Urban Pollutant Conversion Synergetic Innovation Center of Quantum Information and Quantum Physics University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 P.R. China
| | - Shengda Wang
- Hefei National Laboratory of Physical Science at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 P.R. China
| | - Xinyu Zhang
- Hefei National Laboratory of Physical Science at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 P.R. China
| | - Pengwei Fang
- Hefei National Laboratory of Physical Science at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 P.R. China
| | - Yu Zhou
- Hefei National Laboratory of Physical Science at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 P.R. China
| | - Gui‐Lin Zhuang
- College of Chemical Engineering Zhejiang University of Technology 18, Chaowang Road Hangzhou Zhejiang Province 310032 P.R. China
| | - Xiang Shao
- Department of Chemical Physics CAS Key Laboratory of Urban Pollutant Conversion Synergetic Innovation Center of Quantum Information and Quantum Physics University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 P.R. China
| | - Pingwu Du
- Hefei National Laboratory of Physical Science at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) University of Science and Technology of China 96 Jinzhai Road Hefei Anhui Province 230026 P.R. China
| |
Collapse
|
15
|
Nogami J, Nagashima Y, Sugiyama H, Miyamoto K, Tanaka Y, Uekusa H, Muranaka A, Uchiyama M, Tanaka K. Synthesis of Cyclophenacene‐ and Chiral‐Type Cyclophenylene‐Naphthylene Belts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Juntaro Nogami
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| | | | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Yusuke Tanaka
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Hidehiro Uekusa
- Department of Chemistry Tokyo Institute of Technology O-okayama Meguro-ku Tokyo 152-8550 Japan
| | - Atsuya Muranaka
- Advanced Elements Chemistry Laboratory Cluster for Pioneering Research (CPR) RIKEN 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 Japan
| |
Collapse
|
16
|
Lauer JC, Kohl B, Braun F, Rominger F, Mastalerz M. A Hexagonal Shape‐Persistent Nanobelt of Elongated Rhombic Symmetry with Orthogonal π‐Planes by a One‐Pot Reaction. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jochen C. Lauer
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Bernd Kohl
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Felix Braun
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
17
|
Symmetry and Combinatorial Concepts for Cyclopolyarenes, Nanotubes and 2D-Sheets: Enumerations, Isomers, Structures Spectra & Properties. Symmetry (Basel) 2021. [DOI: 10.3390/sym14010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This review article highlights recent developments in symmetry, combinatorics, topology, entropy, chirality, spectroscopy and thermochemistry pertinent to 2D and 1D nanomaterials such as circumscribed-cyclopolyarenes and their heterocyclic analogs, carbon and heteronanotubes and heteronano wires, as well as tessellations of cyclopolyarenes, for example, kekulenes, septulenes and octulenes. We establish that the generalization of Sheehan’s modification of Pólya’s theorem to all irreducible representations of point groups yields robust generating functions for the enumeration of chiral, achiral, position isomers, NMR, multiple quantum NMR and ESR hyperfine patterns. We also show distance, degree and graph entropy based topological measures combined with techniques for distance degree vector sequences, edge and vertex partitions of nanomaterials yield robust and powerful techniques for thermochemistry, bond energies and spectroscopic computations of these species. We have demonstrated the existence of isentropic tessellations of kekulenes which were further studied using combinatorial, topological and spectral techniques. The combinatorial generating functions obtained not only enumerate the chiral and achiral isomers but also aid in the machine construction of various spectroscopic and ESR hyperfine patterns of the nanomaterials that were considered in this review. Combinatorial and topological tools can become an integral part of robust machine learning techniques for rapid computation of the combinatorial library of isomers and their properties of nanomaterials. Future applications to metal organic frameworks and fullerene polymers are pointed out.
Collapse
|
18
|
He J, Yu M, Pang M, Fan Y, Lian Z, Wang Y, Wang W, Liu Y, Jiang H. Nanosized Carbon Macrocycles Based on a Planar Chiral Pseudo Meta- [2.2]Paracyclophane. Chemistry 2021; 28:e202103832. [PMID: 34962000 DOI: 10.1002/chem.202103832] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Indexed: 11/07/2022]
Abstract
Structural designs combining cycloparaphenylenes (CPPs) backbone with planar chiral [2.2]Paracyclophane ([2.2]PCP) lead to optical-active chiral macrocycles with intriguing properties. X-ray crystal analysis revealed aesthetic necklace-shaped structures and size-dependent packages with long-range channels. The macrocycles exhibit unique photophysical properties with high fluorescence quantum yield of up to 82%, and the fluorescent color varies with ring size. In addition, size-dependent chiroptical properties with moderately large CPL dissymmetry factor of 10 -3 and CPL brightness in the range of 30 - 40 M -1 cm -1 were observed.
Collapse
Affiliation(s)
- Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Mohan Yu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, P. R. China
| | - Maofu Pang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 252100, P. R. China
| | - Yanqing Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhe Lian
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Ying Wang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wenguang Wang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yajun Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
19
|
Yang Y, Juríček M. Fullerene Wires Assembled Inside Carbon Nanohoops. Chempluschem 2021; 87:e202100468. [PMID: 34825520 PMCID: PMC9298906 DOI: 10.1002/cplu.202100468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Indexed: 01/09/2023]
Abstract
Carbon-nanohoop structures featuring one or more round-shaped cavities represent ideal supramolecular hosts for spherical fullerenes, with potential to form host-guest complexes that perform as organic semiconductors in the solid state. Due to the tight complexation between the shape-complementary hosts and guests, carbon nanohoops have the potential to shield fullerenes from water and oxygen, known to perturb the electron-transport process. Many nanohoop receptors have been found to form host-guest complexes with fullerenes. However, there is only a little or no control over the long-range order of encapsulated fullerenes in the solid state. Consequently, the potential of these complexes to perform as organic semiconductors is rarely evaluated. Herein, we present a survey of all known nanohoop-fullerene complexes, for which the solid-state structures were obtained. We discuss and propose instances where the inclusion fullerene guests form discrete supramolecular wires, which might open up possibilities for their use in electronic devices.
Collapse
Affiliation(s)
- Yong Yang
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Michal Juríček
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| |
Collapse
|
20
|
Zhang L, Zhang G, Qu H, Todarwal Y, Wang Y, Norman P, Linares M, Surin M, Zhang H, Lin J, Jiang Y. Naphthodithiophene Diimide Based Chiral π‐Conjugated Nanopillar Molecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Li Zhang
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| | - Guilan Zhang
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| | - Hang Qu
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| | - Yogesh Todarwal
- Department of Theoretical Chemistry and Biology School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Yun Wang
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Mathieu Linares
- Laboratory of Organic Electronics and Scientific Visualization Group, ITN Campus Norrköping Swedish e-Science Research Centre (SeRC) Linköping University 58183 Linköping Sweden
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials Centre of Innovation and Research in Materials and Polymers (CIRMAP) University of Mons—UMONS 20 Place du Parc 7000 Mons Belgium
| | - Hui‐Jun Zhang
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| | - Jianbin Lin
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| | - Yun‐Bao Jiang
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| |
Collapse
|
21
|
Zhang L, Zhang G, Qu H, Todarwal Y, Wang Y, Norman P, Linares M, Surin M, Zhang HJ, Lin J, Jiang YB. Naphthodithiophene Diimide Based Chiral π-Conjugated Nanopillar Molecules. Angew Chem Int Ed Engl 2021; 60:24543-24548. [PMID: 34291529 DOI: 10.1002/anie.202107893] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/07/2022]
Abstract
The synthesis, structures, and properties of [4]cyclonaphthodithiophene diimides ([4]C-NDTIs) are described. NDTIs as important n-type building blocks were catenated in the α-positions of thiophene rings via an unusual electrochemical-oxidation-promoted macrocyclization route. The thiophene-thiophene junction in [4]C-NDTIs results in an ideal pillar shape. This interesting topology, along with appealing electronic and optical properties inherited from the NDTI units, endows the [4]C-NDTIs with both near-infrared (NIR) light absorptions, strong excitonic coupling, and tight encapsulation of C60 . Stable orientations of the NDTI units in the nanopillars lead to stable inherent chirality, which enables detailed circular dichroism studies on the impact of isomeric structures on π-conjugation. Remarkably, the [4]C-NDTIs maintain the strong π-π stacking abilities of NDTI units and thus adopt two-dimensional (2D) lattice arrays at the molecular level. These nanopillar molecules have great potential to mimic natural photosynthetic systems for the development of multifunctional organic materials.
Collapse
Affiliation(s)
- Li Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Guilan Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Hang Qu
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Yogesh Todarwal
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Yun Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Mathieu Linares
- Laboratory of Organic Electronics and Scientific Visualization Group, ITN, Campus Norrköping, Swedish e-Science Research Centre (SeRC), Linköping University, 58183, Linköping, Sweden
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Centre of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS, 20 Place du Parc, 7000, Mons, Belgium
| | - Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
22
|
Zheng S, Han J, Jin X, Ye Q, Zhou J, Duan P, Liu M. Halogen Bonded Chiral Emitters: Generation of Chiral Fractal Architecture with Amplified Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021; 60:22711-22716. [PMID: 34411386 DOI: 10.1002/anie.202108661] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Indexed: 01/05/2023]
Abstract
Self-assembled chiroptical materials have attracted considerable attention due to their great applications in wide fields. During the chiral self-assembly, it remains unknown how achiral molecules can affect the assembly process and their final chiroptical performance. Herein, we report an achiral molecule directed chiral self-assembly via halogen bonds, exhibiting not only an unprecedented chiral fractal architecture but also significantly amplified circularly polarized luminescence (CPL). Two axially chiral emitters with halogen bond sites co-assemble with an achiral 1,4-diiodotetrafluorobenzene (F4 DIB) and well-ordered chiral fractal structures with asymmetry amplification are obtained. The enhancement of the dissymmetry factors of the assemblies was up to 0.051 and 0.011, which was approximately 100 folds than those of the corresponding molecules. It was found that both the design of the chiral emitter and the highly directional halogen bond played an important role in hierarchically chirality transfer from chiral emitters to the micrometer scale chiral fractal morphology and amplified dissymmetry factors. We hope that this strategy can give a further insight into the fabrication of structurally unique featured highly efficient chiroptical materials.
Collapse
Affiliation(s)
- Shuyuan Zheng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, School of Chemistry, Xiangtan University, Xiangtan, 411105, Hunan Province, P. R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Xue Jin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Qiang Ye
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, School of Chemistry, Xiangtan University, Xiangtan, 411105, Hunan Province, P. R. China
| | - Jin Zhou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No.2, ZhongGuanCun BeiYiJie, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Hasegawa M, Nojima Y, Mazaki Y. Circularly Polarized Luminescence in Chiral π‐Conjugated Macrocycles. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Masashi Hasegawa
- Department of Chemistry Graduate School of Science Kitasato University Sagamihara, Kanagawa 252-0373 Japan
| | - Yuki Nojima
- Department of Chemistry Graduate School of Science Kitasato University Sagamihara, Kanagawa 252-0373 Japan
| | - Yasuhiro Mazaki
- Department of Chemistry Graduate School of Science Kitasato University Sagamihara, Kanagawa 252-0373 Japan
| |
Collapse
|
24
|
Zheng S, Han J, Jin X, Ye Q, Zhou J, Duan P, Liu M. Halogen Bonded Chiral Emitters: Generation of Chiral Fractal Architecture with Amplified Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108661] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shuyuan Zheng
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province School of Chemistry Xiangtan University Xiangtan 411105 Hunan Province P. R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Xue Jin
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Qiang Ye
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province School of Chemistry Xiangtan University Xiangtan 411105 Hunan Province P. R. China
| | - Jin Zhou
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences No.2, ZhongGuanCun BeiYiJie Beijing 100190 P. R. China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
25
|
Zeng C, Liu Y, Xue N, Jiang W, Yan S, Wang Z. Monocyclic and Dicyclic Dehydro[20]annulenes Integrated with Perylene Diimide. Angew Chem Int Ed Engl 2021; 60:19018-19023. [PMID: 34105225 DOI: 10.1002/anie.202105044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Indexed: 11/06/2022]
Abstract
A novel kind of monocyclic and dicyclic dehydro[20]annulenes exhibiting specific sizes and topologies from regioselective unilateral ortho-diethynyl PDI, is developed by Cu-catalyzed Glaser-Hay homo-coupling and cross-coupling. Through the integration of electron-deficient PDI chromophores into the dehydroannulene scaffolding, these macrocycles exhibit intense and characteristic absorption properties and the degenerated LUMO levels. The single-crystal X-ray diffraction analysis unambiguously revealed unique porous supramolecular structures, which display micropore characteristics with surface area of 120.74 m2 g-1 . A moderate electron mobility of 0.05 cm2 V-1 s-1 for chlorine-free dehydro[20]annulene based on micrometer-sized single-crystalline transistors was witnessed. The porous and yet semiconducting features signify the prospects of PDI-integrated dehydroannulenes in organic optoelectronics.
Collapse
Affiliation(s)
- Cheng Zeng
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao, 266042, P. R. China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ning Xue
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao, 266042, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
26
|
Zeng C, Liu Y, Xue N, Jiang W, Yan S, Wang Z. Monocyclic and Dicyclic Dehydro[20]annulenes Integrated with Perylene Diimide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cheng Zeng
- Key Laboratory of Rubber-Plastics Ministry of Education Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Ning Xue
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics Ministry of Education Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
27
|
Hermann M, Wassy D, Esser B. Conjugated Nanohoops Incorporating Donor, Acceptor, Hetero- or Polycyclic Aromatics. Angew Chem Int Ed Engl 2021; 60:15743-15766. [PMID: 32902109 PMCID: PMC9542246 DOI: 10.1002/anie.202007024] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/05/2020] [Indexed: 12/20/2022]
Abstract
In the last 13 years several synthetic strategies were developed that provide access to [n]cycloparaphenylenes ([n]CPPs) and related conjugated nanohoops. A number of potential applications emerged, including optoelectronic devices, and their use as templates for carbon nanomaterials and in supramolecular chemistry. To tune the structural or optoelectronic properties of carbon nanohoops beyond the size-dependent effect known for [n]CPPs, a variety of aromatic rings other than benzene were introduced. In this Review, we provide an overview of the syntheses, properties, and applications of conjugated nanohoops beyond [n]CPPs with intrinsic donor/acceptor structure or such that contain acceptor, donor, heteroaromatic or polycyclic aromatic units within the hoop as well as conjugated nanobelts.
Collapse
Affiliation(s)
- Mathias Hermann
- Institute for Organic ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
| | - Daniel Wassy
- Institute for Organic ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
| | - Birgit Esser
- Institute for Organic ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
- Freiburg Materials Research CenterUniversity of FreiburgStefan-Meier-Str. 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
28
|
Nojima Y, Hasegawa M, Hara N, Imai Y, Mazaki Y. Small Figure-Eight Luminophores: Double-Twisted Tethered Cyclic Binaphthyls Boost Circularly Polarized Luminescence. Chemistry 2021; 27:5923-5929. [PMID: 33427332 DOI: 10.1002/chem.202005320] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Indexed: 12/20/2022]
Abstract
Double-twisted cyclic binaphthyls, in which two naphthalenes are tethered by -O(CH2 )n O- linkage (n=1-3), have been synthesized. X-ray analyses and DFT calculations revealed a tightly constrained stereogenic figure-eight geometry. Tethering of two naphthalenes by short linkage forces a small dihedral angle, and the cyclic binaphthyls with short tether (n=1, 2) exhibit remarkable boosting of the glum value (1.0-1.6×10-2 ) in circularly polarized luminescence (CPL) and unusual glum /gabs ratios (0.93-1.3). These experimental high |glum | values are in accord with the results of excited state TD-DFT calculations, which show transannular interactions and that consequent extensive delocalization occurs throughout the figure-eight π-core. As a result, the present figure-eight luminophore promote the elongation of the magnetic transition dipole moment that results in significant increases in glum values.
Collapse
Affiliation(s)
- Yuki Nojima
- Graduate School of Science, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Masashi Hasegawa
- Graduate School of Science, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Nobuyuki Hara
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Yasuhiro Mazaki
- Graduate School of Science, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
29
|
Hermann M, Wassy D, Kohn J, Seitz P, Betschart MU, Grimme S, Esser B. Chiral Dibenzopentalene‐Based Conjugated Nanohoops through Stereoselective Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mathias Hermann
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Daniel Wassy
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Julia Kohn
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4 53115 Bonn Germany
| | - Philipp Seitz
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Martin U. Betschart
- Institut für Pharmazeutische Wissenschaften University of Freiburg Albertstr. 25 79104 Freiburg Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4 53115 Bonn Germany
| | - Birgit Esser
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
- Freiburg Materials Research Center University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
30
|
Hermann M, Wassy D, Kohn J, Seitz P, Betschart MU, Grimme S, Esser B. Chiral Dibenzopentalene-Based Conjugated Nanohoops through Stereoselective Synthesis. Angew Chem Int Ed Engl 2021; 60:10680-10689. [PMID: 33596338 PMCID: PMC8252646 DOI: 10.1002/anie.202016968] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/16/2021] [Indexed: 11/06/2022]
Abstract
Conjugated nanohoops allow to investigate the effect of radial conjugation and bending on the involved π-systems. They can possess unexpected optoelectronic properties and their radially oriented π-system makes them attractive for host-guest chemistry. Bending the π-subsystems can lead to chiral hoops. Herein, we report the stereoselective synthesis of two enantiomers of chiral conjugated nanohoops by incorporating dibenzo[a,e]pentalenes (DBPs), which are generated in the last synthetic step from enantiomerically pure diketone precursors. Owing to its bent shape, this diketone unit was used as the only bent precursor and novel "corner unit" in the synthesis of the hoops. The [6]DBP[4]Ph-hoops contain six antiaromatic DBP units and four bridging phenylene groups. The small HOMO-LUMO gap and ambipolar electrochemical character of the DBP units is reflected in the optoelectronic properties of the hoop. Electronic circular dichroism spectra and MD simulations showed that the chiral hoop did not racemize even when heated to 110 °C. Due to its large diameter, it was able to accommodate two C60 molecules, as binding studies indicate.
Collapse
Affiliation(s)
- Mathias Hermann
- Institute for Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Daniel Wassy
- Institute for Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Julia Kohn
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Philipp Seitz
- Institute for Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Martin U Betschart
- Institut für Pharmazeutische Wissenschaften, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Birgit Esser
- Institute for Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany.,Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, 79104, Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| |
Collapse
|
31
|
Hermann M, Wassy D, Esser B. Conjugated Nanohoops Incorporating Donor, Acceptor, Hetero‐ or Polycyclic Aromatics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202007024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mathias Hermann
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Daniel Wassy
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Birgit Esser
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
- Freiburg Materials Research Center University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
32
|
Sato K, Hasegawa M, Nojima Y, Hara N, Nishiuchi T, Imai Y, Mazaki Y. Circularly Polarized Luminescence of a Stereogenic Curved Paraphenylene Anchoring a Chiral Binaphthyl in Solution and Solid State. Chemistry 2021; 27:1323-1329. [PMID: 33079420 DOI: 10.1002/chem.202004283] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Indexed: 12/17/2022]
Abstract
A curved stereogenic [6]paraphenylene ([6]PP), anchoring a chiral binaphthyl scaffold at 7,7'-positions, was prepared and investigated for its properties as a solid-state circularly polarized luminescence (CPL) dye. X-ray analysis revealed a helically twisted structure of PP units induced by axial chirality of binaphthyl framework. The curved [6]PP exhibits fluorescence in powder and polymethyl methacrylate (PMMA) film as well as solution. A significant increase in quantum yield was observed for a non-fluid PMMA film owing the suppression of the molecular motion. The gCPL values of the dye in solution and as PMMA film were almost the same (4.3-4.4×10-3 ) and lager than that in powder. TD-DFT calculations in the excited state suggest that the exciton can be delocalized into a twisted PP unit to produce a larger magnetic transition dipole moment.
Collapse
Affiliation(s)
- Kenta Sato
- Department of Chemistry, Graduate School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Masashi Hasegawa
- Department of Chemistry, Graduate School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yuki Nojima
- Department of Chemistry, Graduate School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Nobuyuki Hara
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-1-4 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Tomohiko Nishiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-1-4 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Yasuhiro Mazaki
- Department of Chemistry, Graduate School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
33
|
Matsuki H, Okubo K, Takaki Y, Niihori Y, Mitsui M, Kayahara E, Yamago S, Kobayashi K. Synthesis and Properties of a Cyclohexa‐2,7‐anthrylene Ethynylene Derivative. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hironori Matsuki
- Department of Chemistry Faculty of Science Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| | - Keisuke Okubo
- Department of Chemistry Faculty of Science Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| | - Yuta Takaki
- Department of Chemistry Faculty of Science Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| | - Yoshiki Niihori
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Masaaki Mitsui
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Eiichi Kayahara
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| | - Shigeru Yamago
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| | - Kenji Kobayashi
- Department of Chemistry Faculty of Science Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
- Research Institute of Green Science and Technology Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| |
Collapse
|
34
|
Matsuki H, Okubo K, Takaki Y, Niihori Y, Mitsui M, Kayahara E, Yamago S, Kobayashi K. Synthesis and Properties of a Cyclohexa-2,7-anthrylene Ethynylene Derivative. Angew Chem Int Ed Engl 2021; 60:998-1003. [PMID: 32981223 DOI: 10.1002/anie.202012120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Indexed: 01/05/2023]
Abstract
The synthesis of a cyclohexa-2,7-(4,5-diaryl)anthrylene ethynylene (1) was achieved for the first time by using 1,8-diaryl-3,6-diborylanthracene and 1,8-diaryl-3,6-diiodoanthracene as key synthetic intermediates. Macrocycle 1 possesses a planar conformation of approximately D6h symmetry, because of the triple-bond linker between the anthracene units at the 2,7-positions. It was confirmed that macrocycle 1, bearing bulky substituents at the outer peripheral positions, behaves as a monomeric form in solution without π-stacking self-association. Macrocycle 1 has an inner-cavity size that allows specific inclusion of [9]cycloparaphenylene ([9]CPP), but not [8]CPP or [10]CPP, through an aromatic edge-to-face CH-π interaction.
Collapse
Affiliation(s)
- Hironori Matsuki
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Keisuke Okubo
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yuta Takaki
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yoshiki Niihori
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Masaaki Mitsui
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Eiichi Kayahara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shigeru Yamago
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kenji Kobayashi
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| |
Collapse
|
35
|
Wang LH, Hayase N, Sugiyama H, Nogami J, Uekusa H, Tanaka K. Synthesis, Structures, and Properties of Highly Strained Cyclophenylene-Ethynylenes with Axial and Helical Chirality. Angew Chem Int Ed Engl 2020; 59:17951-17957. [PMID: 32618087 DOI: 10.1002/anie.202006959] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 12/13/2022]
Abstract
Single and double cyclophenylene-ethynylenes (CPEs) with axial and helical chirality have been synthesized by the Sonogashira cross-coupling of di- and tetraethynyl biphenyls with a U-shaped prearomatic diiodoparaphenylene followed by reductive aromatization. X-ray crystallographic analyses and DFT calculations revealed that the CPEs possess highly twisted bent structures. Bend angles on the edge of the paraphenylene units were close to the value of [5]cycloparaphenylene (CPP)-the smallest CPP to date. The double and single CPEs possessed stable chirality despite flexible biphenyl structures because of the high strain in the diethynyl-paraphenylene moiety. In both the single and double CPEs, orbital interactions along the biphenyl axis were observed by DFT calculations in LUMO and LUMO+2 of the single CPE and LUMO+1 of the double CPE, which likely cause lowering of these orbital energies. Concerning chiroptical properties: boosting of the gabs value was observed in the biphenyl-based double CPE, as well as the binaphthyl-based single CPE, compared to the biphenyl-based single CPE.
Collapse
Affiliation(s)
- Li-Hsiang Wang
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Norihiko Hayase
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Haruki Sugiyama
- Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Kohoku, Yokohama, Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hidehiro Uekusa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
36
|
Wang L, Hayase N, Sugiyama H, Nogami J, Uekusa H, Tanaka K. Synthesis, Structures, and Properties of Highly Strained Cyclophenylene–Ethynylenes with Axial and Helical Chirality. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Li‐Hsiang Wang
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Norihiko Hayase
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Haruki Sugiyama
- Research and Education Center for Natural Sciences Keio University Hiyoshi 4-1-1, Kohoku Yokohama Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hidehiro Uekusa
- Department of Chemistry Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
37
|
Fujise K, Tsurumaki E, Fukuhara G, Hara N, Imai Y, Toyota S. Multiple Fused Anthracenes as Helical Polycyclic Aromatic Hydrocarbon Motif for Chiroptical Performance Enhancement. Chem Asian J 2020; 15:2456-2461. [DOI: 10.1002/asia.202000394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/19/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Kei Fujise
- Department of ChemistrySchool of ScienceTokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8551 Japan
| | - Eiji Tsurumaki
- Department of ChemistrySchool of ScienceTokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8551 Japan
| | - Gaku Fukuhara
- Department of ChemistrySchool of ScienceTokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8551 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Nobuyuki Hara
- Department of Applied ChemistryFaculty of Science and EngineeringKindai University 3-4-1 Kowakae Higashi Osaka Osaka 577-8502 Japan
| | - Yoshitane Imai
- Department of Applied ChemistryFaculty of Science and EngineeringKindai University 3-4-1 Kowakae Higashi Osaka Osaka 577-8502 Japan
| | - Shinji Toyota
- Department of ChemistrySchool of ScienceTokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|