1
|
Wang M, Loiudice A, Okatenko V, Sharp ID, Buonsanti R. The spatial distribution of cobalt phthalocyanine and copper nanocubes controls the selectivity towards C 2 products in tandem electrocatalytic CO 2 reduction. Chem Sci 2023; 14:1097-1104. [PMID: 36756336 PMCID: PMC9891351 DOI: 10.1039/d2sc06359j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The coupling of CO-generating molecular catalysts with copper electrodes in tandem schemes is a promising strategy to boost the formation of multi-carbon products in the electrocatalytic reduction of CO2. While the spatial distribution of the two components is important, this aspect remains underexplored for molecular-based tandem systems. Herein, we address this knowledge gap by studying tandem catalysts comprising Co-phthalocyanine (CoPc) and Cu nanocubes (Cucub). In particular, we identify the importance of the relative spatial distribution of the two components on the performance of the tandem catalyst by preparing CoPc-Cucub/C, wherein the CoPc and Cucub share an interface, and CoPc-C/Cucub, wherein the CoPc is loaded first on carbon black (C) before mixing with the Cucub. The electrocatalytic measurements of these two catalysts show that the faradaic efficiency towards C2 products almost doubles for the CoPc-Cucub/C, whereas it decreases by half for the CoPc-C/Cucub, compared to the Cucub/C. Our results highlight the importance of a direct contact between the CO-generating molecular catalyst and the Cu to promote C-C coupling, which hints at a surface transport mechanism of the CO intermediate between the two components of the tandem catalyst instead of a transfer via CO diffusion in the electrolyte followed by re-adsorption.
Collapse
Affiliation(s)
- Min Wang
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Anna Loiudice
- Walter Schottky Institute and Physics Department, Technische Universität MünchenAm Coulombwall 485748 GarchingGermany
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Ian D. Sharp
- Walter Schottky Institute and Physics Department, Technische Universität MünchenAm Coulombwall 485748 GarchingGermany
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| |
Collapse
|
2
|
Wang X, Hu Q, Li G, Yang H, He C. Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Wan L, Zhang X, Cheng J, Chen R, Wu L, Shi J, Luo J. Bimetallic Cu–Zn Catalysts for Electrochemical CO2 Reduction: Phase-Separated versus Core–Shell Distribution. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lili Wan
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China
| | - Xilin Zhang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Jinshui Cheng
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China
| | - Rong Chen
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China
| | - Linxiao Wu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China
| | - Jiawen Shi
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China
| | - Jingshan Luo
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Imparting CO
2
Electroreduction Auxiliary for Integrated Morphology Tuning and Performance Boosting in a Porphyrin‐based Covalent Organic Framework. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Wang YR, Ding HM, Ma XY, Liu M, Yang YL, Chen Y, Li SL, Lan YQ. Imparting CO 2 Electroreduction Auxiliary for Integrated Morphology Tuning and Performance Boosting in a Porphyrin-based Covalent Organic Framework. Angew Chem Int Ed Engl 2021; 61:e202114648. [PMID: 34806265 DOI: 10.1002/anie.202114648] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/09/2022]
Abstract
Strategies that enable simultaneous morphology-tuning and electroreduction performance boosting are much desired for the exploration of covalent organic frameworks in efficient CO2 electroreduction. Herein, a kind of functionalizing exfoliation agent has been selected to simultaneously modify and exfoliate bulk COFs into functional nanosheets and investigate their CO2 electroreduction performance. The obtained nanosheets (Cu-Tph-COF-Dct) with large-scale (≈1.0 μm) and ultrathin (≈3.8 nm) morphology enable a superior FECH4 (≈80 %) (almost doubly enhanced than bare COF) with large current-density (-220.0 mA cm-2 ) at -0.9 V. The boosted performance can be ascribed to the immobilized functionalizing exfoliation agent (Dct groups) with integrated amino and triazine groups that strengthen CO2 absorption/activation, stabilize intermediates and enrich the CO concentration around the Cu active sites as revealed by DFT calculations. The point-to-point functionalization strategy for modularly assembling Dct-functionalized COF catalyst for CO2 electroreduction will open up the attractive possibility of developing COFs as efficient CO2 RR electrocatalysts.
Collapse
Affiliation(s)
- Yi-Rong Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hui-Min Ding
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xiao-Yu Ma
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Ming Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yi-Lu Yang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yifa Chen
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shun-Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
6
|
Dongare S, Singh N, Bhunia H, Bajpai PK, Das AK. Electrochemical Reduction of Carbon Dioxide to Ethanol: A Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202102829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saudagar Dongare
- Department of Chemical Engineering Thapar Institute of Engineering and Technology (Deemed to be University) Patiala 147004 Punjab India
| | - Neetu Singh
- Department of Chemical Engineering Thapar Institute of Engineering and Technology (Deemed to be University) Patiala 147004 Punjab India
| | - Haripada Bhunia
- Department of Chemical Engineering Thapar Institute of Engineering and Technology (Deemed to be University) Patiala 147004 Punjab India
| | - Pramod K. Bajpai
- Ex-Distinguished Professor Department of Chemical Engineering Thapar Institute of Engineering and Technology (Deemed to be University) Patiala 147004 Punjab India
- Present address: G-1 Ekta Apartment 120/912 Ranjeet Nagar Kanpur 208005 Uttar Pradesh India
| | - Asit Kumar Das
- Head, Refinery R&D and Process Development, Reliance Industries Limited Jamnagar 361142 Gujarat India
| |
Collapse
|
7
|
Iyengar P, Kolb MJ, Pankhurst J, Calle-Vallejo F, Buonsanti R. Theory-Guided Enhancement of CO2 Reduction to Ethanol on Ag–Cu Tandem Catalysts via Particle-Size Effects. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Pranit Iyengar
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Manuel J. Kolb
- Department of Materials Science and Chemical Physics & Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - James Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Federico Calle-Vallejo
- Department of Materials Science and Chemical Physics & Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| |
Collapse
|
8
|
Dongare S, Singh N, Bhunia H, Bajpai PK. Electrochemical reduction of CO2 using oxide based Cu and Zn bimetallic catalyst. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Wu M, Dong X, Chen W, Chen A, Zhu C, Feng G, Li G, Song Y, Wei W, Sun Y. Investigating the Effect of the Initial Valence States of Copper on CO
2
Electroreduction. ChemElectroChem 2021. [DOI: 10.1002/celc.202100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Minfang Wu
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiao Dong
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
| | - Wei Chen
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
| | - Aohui Chen
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 P. R. China
| | - Chang Zhu
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guanghui Feng
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guihua Li
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanfang Song
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
| | - Wei Wei
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 P. R. China
| | - Yuhan Sun
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 P. R. China
| |
Collapse
|
10
|
Liu Y, Qiu H, Li J, Guo L, Ager JW. Tandem Electrocatalytic CO 2 Reduction with Efficient Intermediate Conversion over Pyramid-Textured Cu-Ag Catalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40513-40521. [PMID: 34405982 DOI: 10.1021/acsami.1c08688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
If combined with renewably generated electricity, electrochemical CO2 reduction (E-CO2R) could be used as a sustainable source of chemicals and fuels. Tandem catalysis approaches are attractive for providing the product selectivity, which would be required for commercial applications. Here, we demonstrate a two-step tandem electrocatalytic E-CO2R with efficient conversion of the intermediate species. The catalyst scaffold is Si(100), which is etched to form a textured surface consisting of micron-sized pyramid structures with the {111} facets. Two metals are used in the electrocatalytic cascade: Ag is employed to perform a two-electron reduction of CO2 to the intermediate CO, and Cu performs conversion to more reduced products. Using high-angle physical vapor deposition, we form separated, micron-scale areas of the two electrocatalysts on opposite sides of the pyramids, with their relative surface coverages being tunable with the deposition angle. Compared to the textured scaffolds with blanket Ag and Cu used as controls, bimetallic pyramid tandem catalysts have higher current densities and much lower faradic efficiencies (FE) for CO. These effects are due to efficient conversion of the CO formed on Ag to more reduced products on Cu. Methane is the main product to be enhanced by the cascade pathway: a bimetallic catalyst with approximately equal coverages of Ag and Cu produces methane with a FE of 62% at -1.1 VRHE, corresponding to a partial current density of 12.7 mA cm-2. We estimate an intermediate conversion yield for the CO intermediate of 80-90%, which is close to the mass-transport limited value predicted by reaction-diffusion simulations.
Collapse
Affiliation(s)
- Ya Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haoran Qiu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinghan Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liejin Guo
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | | |
Collapse
|
11
|
Mosali VSS, Zhang X, Liang Y, Li L, Puxty G, Horne MD, Brajter-Toth A, Bond AM, Zhang J. CdS-Enhanced Ethanol Selectivity in Electrocatalytic CO 2 Reduction at Sulfide-Derived Cu-Cd. CHEMSUSCHEM 2021; 14:2924-2934. [PMID: 34021532 DOI: 10.1002/cssc.202100903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Indexed: 06/12/2023]
Abstract
The development of Cu-based catalysts for the electrochemical CO2 reduction reaction (eCO2 RR) is of major interest for generating commercially important C2 liquid products such as ethanol. Cu is exclusive among the eCO2 RR metallic catalysts in that it facilitates the formation of a range of highly reduced C2 products, with a reasonable total faradaic efficiency but poor product selectivity. Here, a series of new sulfide-derived copper-cadmium catalysts (SD-Cux Cdy ) was developed. An excellent faradaic efficiency of around 32 % but with a relatively low current density of 0.6 mA cm-2 for ethanol was obtained using the SD-CuCd2 catalyst at the relatively low overpotential of 0.89 V in a CO2 -saturated aqueous 0.10 m KHCO3 solution with an H-cell. The current density increased by an order of magnitude under similar conditions using a flow cell where the mass transport rate for CO2 was greatly enhanced. Ex situ spectroscopic and microscopic, and voltammetric investigations pointed to the role of abundant phase boundaries between CdS and Cu+ /Cu sites in the SD-CuCd2 catalyst in enhancing the selectivity and efficiency of ethanol formation at low potentials.
Collapse
Affiliation(s)
| | - Xiaolong Zhang
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | - Yan Liang
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | - Linbo Li
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | - Graeme Puxty
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, Newcastle, 2304, New South Wales, Australia
| | | | - Anna Brajter-Toth
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL, 32611, USA
| | - Alan M Bond
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
- ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, 3800, Victoria, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
- ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, 3800, Victoria, Australia
| |
Collapse
|
12
|
Wu Z, Wu H, Cai W, Wen Z, Jia B, Wang L, Jin W, Ma T. Engineering Bismuth-Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO 2 Reduction to HCOOH. Angew Chem Int Ed Engl 2021; 60:12554-12559. [PMID: 33720479 DOI: 10.1002/anie.202102832] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 12/14/2022]
Abstract
Electrochemical reduction of CO2 (CO2 RR) into valuable hydrocarbons is appealing in alleviating the excessive CO2 level. We present the very first utilization of metallic bismuth-tin (Bi-Sn) aerogel for CO2 RR with selective HCOOH production. A non-precious bimetallic aerogel of Bi-Sn is readily prepared at ambient temperature, which exhibits 3D morphology with interconnected channels, abundant interfaces and a hydrophilic surface. Superior to Bi and Sn, the Bi-Sn aerogel exposes more active sites and it has favorable mass transfer properties, which endow it with a high FEHCOOH of 93.9 %. Moreover, the Bi-Sn aerogel achieves a FEHCOOH of ca. 90 % that was maintained for 10 h in a flow battery. In situ ATR-FTIR measurements confirmed that the formation of *HCOO is the rate-determining step toward formic acid generation. DFT demonstrated the coexistence of Bi and Sn optimized the energy barrier for the production of HCOOH, thereby improving the catalytic activity.
Collapse
Affiliation(s)
- Zexing Wu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Hengbo Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Weiquan Cai
- School of chemistry and chemical engineering, Guangzhou University, 230 Guangzhou University City Outer Ring Road, Guangzhou, 510006, China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Baohua Jia
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC, 3122, Australia
| | - Lei Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Wei Jin
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
13
|
Wu Z, Wu H, Cai W, Wen Z, Jia B, Wang L, Jin W, Ma T. Engineering Bismuth–Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO
2
Reduction to HCOOH. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zexing Wu
- State Key Laboratory Base of Eco-chemical Engineering College of Chemistry and Molecular Engineering Qingdao University of Science & Technology 53 Zhengzhou Road Qingdao 266042 P. R. China
| | - Hengbo Wu
- State Key Laboratory of Pollution Control and Resources Reuse School of Environmental Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 China
| | - Weiquan Cai
- School of chemistry and chemical engineering Guangzhou University 230 Guangzhou University City Outer Ring Road Guangzhou 510006 China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Baohua Jia
- Centre for Translational Atomaterials Faculty of Science, Engineering and Technology Swinburne University of Technology John Street Hawthorn VIC 3122 Australia
| | - Lei Wang
- State Key Laboratory Base of Eco-chemical Engineering College of Chemistry and Molecular Engineering Qingdao University of Science & Technology 53 Zhengzhou Road Qingdao 266042 P. R. China
| | - Wei Jin
- State Key Laboratory of Pollution Control and Resources Reuse School of Environmental Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 China
| | - Tianyi Ma
- Centre for Translational Atomaterials Faculty of Science, Engineering and Technology Swinburne University of Technology John Street Hawthorn VIC 3122 Australia
| |
Collapse
|
14
|
Iyengar P, Kolb MJ, Pankhurst JR, Calle-Vallejo F, Buonsanti R. Elucidating the Facet-Dependent Selectivity for CO2 Electroreduction to Ethanol of Cu–Ag Tandem Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00420] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pranit Iyengar
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Manuel J. Kolb
- Department of Materials Science and Chemical Physics & Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - James R. Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Federico Calle-Vallejo
- Department of Materials Science and Chemical Physics & Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| |
Collapse
|
15
|
Zhong D, Zhao Z, Zhao Q, Cheng D, Liu B, Zhang G, Deng W, Dong H, Zhang L, Li J, Li J, Gong J. Coupling of Cu(100) and (110) Facets Promotes Carbon Dioxide Conversion to Hydrocarbons and Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dazhong Zhong
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
- College of Chemistry and Chemical Engineering Taiyuan University of Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Yingze West Street 79 Taiyuan 030024 Shanxi China
| | - Zhi‐Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
| | - Qiang Zhao
- College of Chemistry and Chemical Engineering Taiyuan University of Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Yingze West Street 79 Taiyuan 030024 Shanxi China
| | - Dongfang Cheng
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
| | - Bin Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
| | - Gong Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
| | - Wanyu Deng
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
| | - Hao Dong
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
| | - Lei Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
| | - Jingkun Li
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
| | - Jinping Li
- College of Chemistry and Chemical Engineering Taiyuan University of Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Yingze West Street 79 Taiyuan 030024 Shanxi China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
16
|
Zhong D, Zhao ZJ, Zhao Q, Cheng D, Liu B, Zhang G, Deng W, Dong H, Zhang L, Li J, Li J, Gong J. Coupling of Cu(100) and (110) Facets Promotes Carbon Dioxide Conversion to Hydrocarbons and Alcohols. Angew Chem Int Ed Engl 2021; 60:4879-4885. [PMID: 33231928 DOI: 10.1002/anie.202015159] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Copper can efficiently electro-catalyze carbon dioxide reduction to C2+ products (C2 H4 , C2 H5 OH, n-propanol). However, the correlation between the activity and active sites remains ambiguous, impeding further improvements in their performance. The facet effect of copper crystals to promote CO adsorption and C-C coupling and consequently yield a superior selectivity for C2+ products is described. We achieve a high Faradaic efficiency (FE) of 87 % and a large partial current density of 217 mA cm-2 toward C2+ products on Cu(OH)2 -D at only -0.54 V versus the reversible hydrogen electrode in a flow-cell electrolyzer. With further coupled to a Si solar cell, record-high solar conversion efficiencies of 4.47 % and 6.4 % are achieved for C2 H4 and C2+ products, respectively. This study provides an in-depth understanding of the selective formation of C2+ products on Cu and paves the way for the practical application of electrocatalytic or solar-driven CO2 reduction.
Collapse
Affiliation(s)
- Dazhong Zhong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China.,College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Yingze West Street 79, Taiyuan, 030024, Shanxi, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Qiang Zhao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Yingze West Street 79, Taiyuan, 030024, Shanxi, China
| | - Dongfang Cheng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Bin Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Gong Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Wanyu Deng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Hao Dong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Lei Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Jingkun Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Jinping Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Yingze West Street 79, Taiyuan, 030024, Shanxi, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
17
|
Guntern YT, Okatenko V, Pankhurst J, Varandili SB, Iyengar P, Koolen C, Stoian D, Vavra J, Buonsanti R. Colloidal Nanocrystals as Electrocatalysts with Tunable Activity and Selectivity. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04403] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yannick T. Guntern
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - James Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Seyedeh Behnaz Varandili
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Pranit Iyengar
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Cedric Koolen
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Dragos Stoian
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Jan Vavra
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| |
Collapse
|
18
|
Chatterjee S, Bhanja P, Ghosh D, Kumar P, Kanti Das S, Dalapati S, Bhaumik A. Metformin-Templated Nanoporous ZnO and Covalent Organic Framework Heterojunction Photoanode for Photoelectrochemical Water Oxidation. CHEMSUSCHEM 2021; 14:408-416. [PMID: 33052003 DOI: 10.1002/cssc.202002136] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Photoelectrochemical water-splitting offers unique opportunity in the utilization of abundant solar light energy and water resources to produce hydrogen (renewable energy) and oxygen (clean environment) in the presence of a semiconductor photoanode. Zinc oxide (ZnO), a wide bandgap semiconductor is found to crystallize predominantly in the hexagonal wurtzite phase. Herein, we first report a new crystalline triclinic phase of ZnO by using N-rich antidiabetic drug metformin as a template via hydrothermal synthesis with self-assembled nanorod-like particle morphology. We have fabricated a heterojunction nanocomposite charge carrier photoanode by coupling this porous ZnO with a covalent organic framework, which displayed highly enhanced photocurrent density of 0.62 mA/cm2 at 0.2 V vs. RHE in photoelectrochemical water oxidation and excellent photon-to-current conversion efficiency at near-neutral pH vis-à-vis bulk ZnO. This enhancement of the photocurrent for the porous ZnO/COF nanocomposite material over the corresponding bulk ZnO could be attributed to the visible light energy absorption by COF and subsequent efficient charge-carrier mobility via porous ZnO surface.
Collapse
Affiliation(s)
- Sauvik Chatterjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Piyali Bhanja
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Dibyendu Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Praveen Kumar
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Sabuj Kanti Das
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Sasanka Dalapati
- School of Technology, Department of Materials Science, Central University of Tamil Nadu (CUTN), Neelakudi, Thiruvarur, Tamil Nadu, 610005, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
19
|
Li J, Li J, Dun C, Chen W, Zhang D, Gu J, Urban JJ, Ager JW. Copper sulfide as the cation exchange template for synthesis of bimetallic catalysts for CO 2 electroreduction. RSC Adv 2021; 11:23948-23959. [PMID: 35478999 PMCID: PMC9036827 DOI: 10.1039/d1ra03811g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
Among metals used for CO2 electroreduction in water, Cu appears to be unique in its ability to produce C2+ products like ethylene. Bimetallic combinations of Cu with other metals have been investigated with the goal of steering selectivity via creating a tandem pathway through the CO intermediate or by changing the surface electronic structure. Here, we demonstrate a facile cation exchange method to synthesize Ag/Cu electrocatalysts for CO2 reduction using Cu sulfides as a growth template. Beginning with Cu2−xS nanosheets (C-nano-0, 100 nm lateral dimension, 14 nm thick), varying the Ag+ concentration in the exchange solution produces a gradual change in crystal structure from Cu7S4 to Ag2S, as the Ag/Cu mass ratio varies from 0.3 to 25 (CA-nano-x, x indicating increasing Ag fraction). After cation exchange, the nanosheet morphology remains but with increased shape distortion as the Ag fraction is increased. Interestingly, the control (C-nano-0) and cation exchanged nanosheets have very high faradaic efficiency for producing formate at low overpotential (−0.2 V vs. RHE). The primary effect of Ag incorporation is increased production of C2+ products at −1.0 V vs. RHE compared with C-nano-0, which primarily produces formate. Cation exchange can also be used to modify the surface of Cu foils. A two-step electro-oxidation/sulfurization process was used to form Cu sulfides on Cu foil (C-foil-x) to a depth of a few 10 s of microns. With lower Ag+ concentrations, cation exchange produces uniformly dispersed Ag; however, at higher concentrations, Ag particles nucleate on the surface. During CO2 electroreduction testing, the product distribution for Ag/Cu sulfides on Cu foil (CA-foil-x-y) changes in time with an initial increase in ethylene and methane production followed by a decrease as more H2 is produced. The catalysts undergo a morphology evolution towards a nest-like structure which could be responsible for the change in selectivity. For cation-exchanged nanosheets (CA-nano-x), pre-reduction at negative potentials increases the CO2 reduction selectivity compared to tests of as-synthesized material, although this led to the aggregation of nanosheets into filaments. Both types of bimetallic catalysts are capable of selective reduction of CO2 to multi-carbon products, although the optimal configurations appear to be metastable. Cu sulfides as a template for Ag/Cu sulfide catalysts for electrochemical CO2. With the introduction of Ag, nanosheet show increased C2+ product generation. The catalysts undergo a morphology evolution as CO2 reduction proceeds.![]()
Collapse
Affiliation(s)
- Jinghan Li
- State Key Laboratory of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Junrui Li
- Joint Center for Artificial Photosynthesis
- Materials Sciences Division and Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Chaochao Dun
- The Molecular Foundry
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Wenshu Chen
- The School of Environmental Science
- Nanjing Key Laboratory of Advanced Functional Materials
- Nanjing Xiaozhuang University
- Nanjing
- China
| | - Di Zhang
- State Key Laboratory of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Jiajun Gu
- State Key Laboratory of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Jeffrey J. Urban
- The Molecular Foundry
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Joel W. Ager
- Joint Center for Artificial Photosynthesis
- Materials Sciences Division and Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| |
Collapse
|
20
|
Zhang Q, Luan J, Huang X, Zhu L, Tang Y, Ji X, Wang H. Simultaneously Regulating the Ion Distribution and Electric Field to Achieve Dendrite-Free Zn Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000929. [PMID: 32762034 DOI: 10.1002/smll.202000929] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/01/2020] [Indexed: 05/06/2023]
Abstract
Rechargeable aqueous Zn-ion batteries are promising candidates for large-scale energy storage systems. However, there are many unresolved problems in commercial Zn foils such as dendrite growth and structural collapse. Herein, Cu mesh modified with CuO nanowires is constructed to simultaneously coordinate the ion distribution and electric field during Zn nucleation and growth. Owing to the improved uniformity of Zn plating and the confined Zn growth in the 3D framework, the prepared Zn anodes can be operated steadily in symmetrical cells for 340 h with a low voltage hysteresis (20 mV). This work can provide a new strategy to design the dendrite-free Zn anodes for practical application.
Collapse
Affiliation(s)
- Qi Zhang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jingyi Luan
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Xiaobing Huang
- College of Chemistry and Chemical Engineering, Hunan University of Arts and Science, Changde, 415000, P. R. China
| | - Lin Zhu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yougen Tang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Xiaobo Ji
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Haiyan Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
21
|
Wang M, Zhang Q, Xie Q, Wan L, Zhao Y, Zhang X, Luo J. Selective electrochemical reduction of carbon dioxide to ethylene on a copper hydroxide nitrate nanostructure electrode. NANOSCALE 2020; 12:17013-17019. [PMID: 32780074 DOI: 10.1039/d0nr02591g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochemical carbon dioxide reduction (CO2 RR) is a promising technology to convert CO2 into valuable carbon-based fuels and chemicals. Copper (Cu) is a unique catalyst for this reaction as it yields substantial hydrocarbon products, but still suffers from low selectivity in aqueous solution. Here, we present a nanostructure Cu@Cu2(OH)3NO3 electrode using a facile molten salt decomposition method (MSDM). Both XPS and XRD data indicate that Cu2(OH)3NO3 is converted into metallic Cu when employed in CO2 electroreduction in KHCO3 solution, leaving abundant defects on the dendritic rough surface. Benefiting from the defects and rough surface, this electrode exhibited a high selectivity for C2H4 production with a faradaic efficiency (FE) of 31.80% and a high stability for 20 h.
Collapse
Affiliation(s)
- Mang Wang
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Research Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin 300350, China.
| | - Qixing Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Research Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin 300350, China.
| | - Qixian Xie
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Research Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin 300350, China.
| | - Lili Wan
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Research Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin 300350, China.
| | - Ying Zhao
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Research Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin 300350, China.
| | - Xiaodan Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Research Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin 300350, China.
| | - Jingshan Luo
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Research Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin 300350, China.
| |
Collapse
|
22
|
Fundamentals of Gas Diffusion Electrodes and Electrolysers for Carbon Dioxide Utilisation: Challenges and Opportunities. Catalysts 2020. [DOI: 10.3390/catal10060713] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Electrocatalysis plays a prominent role in the development of carbon dioxide utilisation technologies. Many new and improved CO2 conversion catalysts have been developed in recent years, progressively achieving better performance. However, within this flourishing field, a disconnect in catalyst performance evaluation has emerged as the Achilles heel of CO2 electrolysis. Too often, catalysts are assessed in electrochemical settings that are far removed from industrially relevant operational conditions, where CO2 mass transport limitations should be minimised. To overcome this issue, gas diffusion electrodes and gas-fed electrolysers need to be developed and applied, presenting new challenges and opportunities to the CO2 electrolysis community. In this review, we introduce the reader to the fundamentals of gas diffusion electrodes and gas-fed electrolysers, highlighting their advantages and disadvantages. We discuss in detail the design of gas diffusion electrodes and their operation within gas-fed electrolysers in both flow-through and flow-by configurations. Then, we correlate the structure and composition of gas diffusion electrodes to the operational performance of electrolysers, indicating options and prospects for improvement. Overall, this study will equip the reader with the fundamental understanding required to enhance and optimise CO2 catalysis beyond the laboratory scale.
Collapse
|
23
|
Pan Z, Wang K, Ye K, Wang Y, Su HY, Hu B, Xiao J, Yu T, Wang Y, Song S. Intermediate Adsorption States Switch to Selectively Catalyze Electrochemical CO2 Reduction. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05115] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhangweihao Pan
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Kun Wang
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Kaihang Ye
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Ying Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin NT, Hong Kong999077, China
| | - Hai-Yan Su
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Bihua Hu
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Juan Xiao
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Tongwen Yu
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Wang
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuqin Song
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
24
|
Gao J, Zhang H, Guo X, Luo J, Zakeeruddin SM, Ren D, Grätzel M. Selective C–C Coupling in Carbon Dioxide Electroreduction via Efficient Spillover of Intermediates As Supported by Operando Raman Spectroscopy. J Am Chem Soc 2019; 141:18704-18714. [DOI: 10.1021/jacs.9b07415] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jing Gao
- School of Metallurgy and Environment, Central South University, Changsha, 410083 Hunan, China
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hong Zhang
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Xueyi Guo
- School of Metallurgy and Environment, Central South University, Changsha, 410083 Hunan, China
| | - Jingshan Luo
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Shaik M. Zakeeruddin
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Dan Ren
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|