1
|
Ding Y, Ruan X, Shu K, Xu W, Liu Y, Mo G, Xu J, Jian Y, Zhang J, Zhang L, Wang K, Hou JT, Shen J, Yan Z, Ye F, Zhu J, Dai L. Rational Design of Mono-Substituted Gd-DOTA as Highly Stable and Efficient MRI Contrast Agents for Hepatobiliary and Inflammation Imaging. J Med Chem 2024; 67:15476-15493. [PMID: 39190821 DOI: 10.1021/acs.jmedchem.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Hepatobiliary-specific magnetic resonance imaging contrast agents (MRI CAs) play a crucial role in the early diagnosis of hepatocellular carcinoma (HCC). However, only two acyclic CAs, Gd-BOPTA and Gd-EOB-DTPA, exhibit unfavorable kinetic inertness. Our study focused on the development of superior stable innovative macrocyclic CAs. By introducing a lipophilic benzyloxy group (OBn) into the H4DOTA ring (Gd-L1), we achieved significant enhancement in kinetic inertness. In vivo experiments in mice demonstrated that 40% of the dosage was distributed to the liver at 5 min, providing sustained hepatic enhancement for over 35 min. We also developed an MPO-responsive MRI CA (Gd-L3), which can participate in the "peroxidase cycle" as the substrate, generating oligomers with a 3.8-fold increase in relaxivity, and selectively enhance the lesion in an acute gout mouse model. Overall, our work represents a significant advancement in the field of hepatic and inflammatory MRI, offering promising avenues for early diagnosis and improved imaging outcomes.
Collapse
Affiliation(s)
- Yinghui Ding
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Xinzhong Ruan
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Kun Shu
- Wenzhou Key Laboratory of the Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Weiyuan Xu
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yao Liu
- Sichuan Key Laboratory of Medical Imaging, School of Basic Medical Sciences and Forensic Medicine and Nanchong Key Laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Gengshen Mo
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Jiao Xu
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yong Jian
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Jilai Zhang
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Lingfeng Zhang
- Wenzhou Key Laboratory of the Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Keren Wang
- Wenzhou Key Laboratory of the Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ji-Ting Hou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhihan Yan
- Wenzhou Key Laboratory of the Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fangfu Ye
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, School of Basic Medical Sciences and Forensic Medicine and Nanchong Key Laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Lixiong Dai
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
2
|
Kras EA, Cineus R, Crawley MR, Morrow JR. Macrocyclic complexes of Fe(III) with mixed hydroxypropyl and phenolate or amide pendants as T 1 MRI probes. Dalton Trans 2024; 53:4154-4164. [PMID: 38318938 PMCID: PMC10897765 DOI: 10.1039/d3dt04013e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
High-spin Fe(III) complexes of 1,4,7-triazacyclononane (TACN) with mixed oxygen donor pendants including hydroxypropyl, phenolate or amide groups are prepared for study as T1 MRI probes. Complexes with two hydroxypropyl pendants and either amide (Fe(TOAB)) or phenolate (Fe(PTOB)) groups are compared to an analog with three hydroxypropyl groups (Fe(NOHP)), in order to study the effect of the third pendant on the coordination sphere as probed by solution chemistry, relaxivity and structural studies. Solution studies show that Fe(PTOB) has two ionizations with the phenol pendant deprotonating with a pKa of 1.7 and a hydroxypropyl pendent with pKa of 6.3. The X-ray crystal structure of [Fe(PTOB)]Br2 features a six-coordinate complex with two bound hydroxypropyl groups, and a phenolate in a distorted octahedral geometry. The Fe(TOAB) complex has a single deprotonation, assigned to a hydroxypropyl group with a pKa value of 7.0. Both complexes are stabilized as high-spin Fe(III) in solution as shown by their effective magnetic moments and Fe(III)/Fe(II) redox potentials of -390 mV and -780 mV versus NHE at pH 7 and 25 °C for Fe(TOAB) and Fe(PTOB) respectively. Both Fe(PTOB) and Fe(TOAB) are kinetically inert to dissociation under a variety of challenges including phosphate/carbonate buffer, one equivalent of ZnCl2, two equivalents of transferrin or 100 mM HCl, or at basic pH values over 24 h at 37 °C. The r1 relaxivity of Fe(TOAB) at 1.4 T, pH 7.4 and 33 °C is relatively low at 0.6 mM-1 s-1 whereas the r1 relaxivity of Fe(PTOB) is more substantial and shows an increase of 2.5 fold to 2.5 mM-1 s-1 at acidic pH. The increase in relaxivity at acidic pH is attributed to protonation of the phenolate group to provide an additional pathway for proton relaxation.
Collapse
Affiliation(s)
- Elizabeth A Kras
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, USA.
| | - Roy Cineus
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, USA.
| | - Matthew R Crawley
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, USA.
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, USA.
| |
Collapse
|
3
|
Chowdhury MSI, Kras EA, Turowski SG, Spernyak JA, Morrow JR. Liposomal MRI probes containing encapsulated or amphiphilic Fe(III) coordination complexes. Biomater Sci 2023; 11:5942-5954. [PMID: 37470467 DOI: 10.1039/d3bm00029j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Liposomes containing high-spin Fe(III) coordination complexes were prepared towards the production of T1 MRI probes with improved relaxivity. The amphiphilic Fe(III) complexes were anchored into the liposome with two alkyl chains to give a coordination sphere containing mixed amide and hydroxypropyl pendant groups. The encapsulated complex contains a macrocyclic ligand with three phosphonate pendants, [Fe(NOTP)]3-, which was chosen for its good aqueous solubility. Four types of MRI probes were prepared including those with intraliposomal Fe(III) complex (LipoA) alone, amphiphilic Fe(III) complex (LipoB), both intraliposomal and amphiphilic complex (LipoC) or micelles formed with amphiphilic complex. Water proton relaxivities r1 and r2 were measured and compared to a small molecule macrocyclic Fe(III) complex containing similar donor groups. Micelles of the amphiphilic Fe(III) complex had proton relaxivity values (r1 = 2.6 mM-1 s-1) that were four times higher than the small hydrophilic analog. Liposomes with amphiphilic Fe(III) complex (LipoB) have a per iron relaxivity of 2.6 mM-1 s-1 at pH 7.2, 34 °C at 1.4 T whereas liposomes containing both amphiphilic and intraliposomal Fe(III) complexes (lipoC) have r1 of 0.58 mM-1 s-1 on a per iron basis consistent with quenching of the interior Fe(III) complex relaxivity. Liposomes containing only encapsulated [Fe(NOTP)]3- have a lowered r1 of 0.65 mM-1 s-1 per iron complex. Studies show that the biodistribution and clearance of the different types liposomal nanoparticles differ greatly. LipoB is a blood pool agent with a long circulation time whereas lipoC is cleared more rapidly through both renal and hepatobiliary pathways. These clearance differences are consistent with lower stability of LipoC compared to LipoB.
Collapse
Affiliation(s)
- Md Saiful I Chowdhury
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, NY 14260, USA.
| | - Elizabeth A Kras
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, NY 14260, USA.
| | - Steven G Turowski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, NY 14260, USA.
| |
Collapse
|
4
|
Duraiyarasu M, Kumaran SS, Mayilmurugan R. Alkyl Chain Appended Fe(III) Catecholate Complex as a Dual-Modal T1 MRI-NIR Fluorescence Imaging Agent via Second Sphere Water Interactions. ACS Biomater Sci Eng 2023. [PMID: 37141045 DOI: 10.1021/acsbiomaterials.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The C12-alkyl chain-conjugated Fe(III) catecholate complex [Fe(C12CAT)3]3-, Fe(C12CAT)3 [C12CAT = N-(3,4-dihydroxyphenethyl)dodecanamide], was synthesized and characterized, reported as a dual-modal T1-MRI and an optical imaging probe. The DFT-optimized structure of Fe(C12CAT)3 reveals a distorted octahedral coordination geometry around the high spin Fe(III) center. The formation constant (-log K) of Fe(C12CAT)3 was calculated as 45.4. The complex exhibited r1-relaxivity values of 2.31 ± 0.12 and 1.52 ± 0.06 mM-1 s-1 at 25 and 37 °C, respectively, on 1.41 T at pH 7.3 via second-sphere water interactions. The interaction of Fe(C12CAT)3 with human serum albumin showed concomitant enhancement of r1-relaxivity to 6.44 ± 0.15 mM-1 s-1. The MR phantom images are significantly brighter and directly correlate to the concentration of Fe(C12CAT)3. Adding an external fluorescent marker IR780 dye to Fe(C12CAT)3 leads to the formation of self-assembly by C12-alkyl chains. It resulted in the fluorescence quenching of the dye, and its critical aggregation concentration was calculated as 70 μM. The aggregated matrix of Fe(C12CAT)3 and IR780 dye is spherical, with an average hydrodynamic diameter of 189.5 nm. This self-assembled supramolecular system is found to be non-fluorescent and was "turn-on" under acidic pH via dissociation of aggregates. The r1-relaxivity is found to be unchanged during the matrix aggregation and disaggregation. The probe showed MRI ON and fluorescent OFF under physiological conditions and MRI ON and fluorescent ON under acidic pH. The cell viability experiments showed that the cells are 80% viable at 1 mM probe concentration. Fluorescence experiments and MR phantom images showed that Fe(C12CAT)3 is a potential dual model imaging probe to visualize the acidic pH environment of the cells.
Collapse
Affiliation(s)
- Maheshwaran Duraiyarasu
- Department of Chemistry, and Department of Bioscience & Biomedical Engineering, Indian Institute of Technology Bhilai, Raipur, Chattisgarh 492015, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | - Ramasamy Mayilmurugan
- Department of Chemistry, and Department of Bioscience & Biomedical Engineering, Indian Institute of Technology Bhilai, Raipur, Chattisgarh 492015, India
| |
Collapse
|
5
|
Salaam J, Fogeron T, Pilet G, Bolbos R, Bucher C, Khrouz L, Hasserodt J. Unprecedented Relaxivity Gap in pH-Responsive Fe III -Based MRI Probes. Angew Chem Int Ed Engl 2023; 62:e202212782. [PMID: 36548129 PMCID: PMC10107872 DOI: 10.1002/anie.202212782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Two mononuclear ferric complexes are reported that respond to a pH change with a 27- and 71-fold jump, respectively, in their capacity to accelerate the longitudinal relaxation rate of water-hydrogen nuclei, and this starting from a negligible base value of only 0.06. This unprecedented performance bodes well for tackling the sensitivity issues hampering the development of Molecular MRI. The two chelates also excel in the fully reversible and fatigue-less nature of this phenomenon. The structural reasons for this performance reside in the macrocyclic nature of the hexa-dentate ligand, as well as the presence of a single pendant arm displaying a five-membered lactam or carbamate which show (perturbed) pKa values of 3.5 in the context of this N6 ⇔ ${ \Leftrightarrow }$ N5O1 coordination motif.
Collapse
Affiliation(s)
- Jeremy Salaam
- Laboratoire de Chimie, UMR CNRS/ENSL 5182, Université de Lyon-ENS de Lyon, 46 allee d'Italie, Lyon, France
| | - Thibault Fogeron
- Laboratoire de Chimie, UMR CNRS/ENSL 5182, Université de Lyon-ENS de Lyon, 46 allee d'Italie, Lyon, France
| | - Guillaume Pilet
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS/UCBL 5615, Université de Lyon-Université Claude Bernard Lyon 1, DOUA, Villeurbanne, France
| | - Radu Bolbos
- Dpt. Animage, CERMEP-Imagerie du Vivant, 59 Blvd Pinel, 69677, Bron, France
| | - Christophe Bucher
- Laboratoire de Chimie, UMR CNRS/ENSL 5182, Université de Lyon-ENS de Lyon, 46 allee d'Italie, Lyon, France
| | - Lhoussain Khrouz
- Laboratoire de Chimie, UMR CNRS/ENSL 5182, Université de Lyon-ENS de Lyon, 46 allee d'Italie, Lyon, France
| | - Jens Hasserodt
- Laboratoire de Chimie, UMR CNRS/ENSL 5182, Université de Lyon-ENS de Lyon, 46 allee d'Italie, Lyon, France
| |
Collapse
|
6
|
Morrow JR, Raymond JJ, Chowdhury MSI, Sahoo PR. Redox-Responsive MRI Probes Based on First-Row Transition-Metal Complexes. Inorg Chem 2022; 61:14487-14499. [PMID: 36067522 DOI: 10.1021/acs.inorgchem.2c02197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The presence of multiple oxidation and spin states of first-row transition-metal complexes facilitates the development of switchable MRI probes. Redox-responsive probes capitalize on a change in the magnetic properties of the different oxidation states of the paramagnetic metal ion center upon exposure to biological oxidants and reductants. Transition-metal complexes that are useful for MRI can be categorized according to whether they accelerate water proton relaxation (T1 or T2 agents), induce paramagnetic shifts of 1H or 19F resonances (paraSHIFT agents), or are chemical exchange saturation transfer (CEST) agents. The various oxidation state couples and their properties as MRI probes are summarized with a focus on Co(II)/Co(III) or Fe(II)/Fe(III) complexes as small molecules or as liposomal agents. Solution studies of these MRI probes are reviewed with an emphasis on redox changes upon treatment with oxidants or with enzymes that are physiologically important in inflammation and disease. Finally, we outline the challenges of developing these probes further for in vivo MRI applications.
Collapse
Affiliation(s)
- Janet R Morrow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Jaclyn J Raymond
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Md Saiful I Chowdhury
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Priya Ranjan Sahoo
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
7
|
Luo S, Qin S, Oudeng G, Zhang L. Iron-Based Hollow Nanoplatforms for Cancer Imaging and Theranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3023. [PMID: 36080059 PMCID: PMC9457987 DOI: 10.3390/nano12173023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 05/27/2023]
Abstract
Over the past decade, iron (Fe)-based hollow nanoplatforms (Fe-HNPs) have attracted increasing attention for cancer theranostics, due to their high safety and superior diagnostic/therapeutic features. Specifically, Fe-involved components can serve as magnetic resonance imaging (MRI) contrast agents (CAs) and Fenton-like/photothermal/magnetic hyperthermia (MTH) therapy agents, while the cavities are able to load various small molecules (e.g., fluorescent dyes, chemotherapeutic drugs, photosensitizers, etc.) to allow multifunctional all-in-one theranostics. In this review, the recent advances of Fe-HNPs for cancer imaging and treatment are summarized. Firstly, the use of Fe-HNPs in single T1-weighted MRI and T2-weighted MRI, T1-/T2-weighted dual-modal MRI as well as other dual-modal imaging modalities are presented. Secondly, diverse Fe-HNPs, including hollow iron oxide (IO) nanoparticles (NPs), hollow matrix-supported IO NPs, hollow Fe-complex NPs and hollow Prussian blue (PB) NPs are described for MRI-guided therapies. Lastly, the potential clinical obstacles and implications for future research of these hollow Fe-based nanotheranostics are discussed.
Collapse
Affiliation(s)
- Shun Luo
- Key Laboratory for Photoelectronic Technology and Application, Guizhou University, Guiyang 550025, China
| | - Shuijie Qin
- Key Laboratory for Photoelectronic Technology and Application, Guizhou University, Guiyang 550025, China
| | - Gerile Oudeng
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Futian, Shenzhen 518038, China
| | - Li Zhang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
8
|
Karbalaei S, Franke A, Jordan A, Rose C, Pokkuluri PR, Beyers RJ, Zahl A, Ivanović‐Burmazović I, Goldsmith CR. A Highly Water‐ and Air‐Stable Iron‐Containing MRI Contrast Agent Sensor for H
2
O
2. Chemistry 2022; 28:e202201179. [DOI: 10.1002/chem.202201179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Sana Karbalaei
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Alicja Franke
- Department of Chemistry Ludwig-Maximilians-Universität München 81377 München Germany
| | - Aubree Jordan
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Cayla Rose
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - P. Raj Pokkuluri
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Ronald J. Beyers
- Auburn University Magnetic Resonance Imaging Research Center Auburn AL 36849 USA
| | - Achim Zahl
- Department of Chemistry and Pharmacy Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | | | | |
Collapse
|
9
|
Kras EA, Snyder EM, Sokolow GE, Morrow JR. Distinct Coordination Chemistry of Fe(III)-Based MRI Probes. Acc Chem Res 2022; 55:1435-1444. [PMID: 35482819 DOI: 10.1021/acs.accounts.2c00102] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ConspectusContrast agents are used in approximately 40% of all magnetic resonance imaging (MRI) procedures to improve the quality of the images based on the distribution and dynamic clearance of the agent. To date, all clinically approved contrast agents are Gd(III) coordination complexes that serve to shorten the longitudinal (T1) and transverse (T2) proton relaxation times of water. Recent interest in replacing Gd with biologically relevant metal ions such as Mn or Fe has led to increased interest in the aqueous coordination chemistry of their complexes. In this Account, we focus on high-spin Fe(III) complexes that have been recently reported as MRI contrast agents or probes in our laboratory.The highly Lewis acidic Fe(III) center has distinct coordination chemistry in aqueous solutions, facilitating alternative strategies in the design of MRI probes. To illustrate this, we describe different classes of Fe(III) MRI probes with a focus on macrocyclic complexes and multinuclear complexes such as self-assembled metal organic polyhedra (MOP). Our initial efforts focused on macrocyclic complexes of Fe(III) in order to tune spin and oxidation states with the goal of stabilizing high-spin Fe(III) in reducing biological environments. Our probes feature six-coordinate Fe(III) complexes of 1,4,7-triazacyclononane with hydroxypropyl, phosphonate, or carboxylate pendant groups to produce Fe(III) complexes that shorten proton T1 times predominantly from second-sphere or outer-sphere interactions at neutral pH. Analogues with pentadentate macrocyclic ligands have an inner-sphere water that does not exchange rapidly on the NMR time scale, yet these complexes are effective relaxation agents. Fe(III) macrocyclic complexes in this class can be modified to modulate their biodistribution and pharmacokinetic clearance in mice. The goal of these studies is for the Fe(III) agents to clear as extracellular fluid agents and produce profiles similar to those of Gd agents. Finally, studies of multimeric Fe(III) complexes are of interest to produce probes that give large proton relaxivity. In this approach the two Fe(III) centers are connected through aryl linkers as demonstrated for several macrocyclic complexes. Even more tightly connected Fe(III) centers are produced in a Fe(III) self-assembled cage with relaxivity of 21 mM-1 s-1 at 4.7 T, 37 °C in the presence of serum albumin to which it is tightly bound. This cage enhances contrast of the vasculature as a blood pool agent and accumulates in tumors. Finally, we present our perspectives on the further development of Fe(III) complexes for various applications in MRI.
Collapse
Affiliation(s)
- Elizabeth A. Kras
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Eric M. Snyder
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Gregory E. Sokolow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
10
|
Wang H, Cleary MB, Lewis LC, Bacon JW, Caravan P, Shafaat HS, Gale EM. Enzyme Control Over Ferric Iron Magnetostructural Properties. Angew Chem Int Ed Engl 2022; 61:e202114019. [PMID: 34814231 PMCID: PMC8935392 DOI: 10.1002/anie.202114019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 01/19/2023]
Abstract
Fe3+ complexes in aqueous solution can exist as discrete mononuclear species or multinuclear magnetically coupled species. Stimuli-driven change to Fe3+ speciation represents a powerful mechanistic basis for magnetic resonance sensor technology, but ligand design strategies to exert precision control of aqueous Fe3+ magnetostructural properties are entirely underexplored. In pursuit of this objective, we rationally designed a ligand to strongly favor a dinuclear μ-oxo-bridged and antiferromagnetically coupled complex, but which undergoes carboxylesterase mediated transformation to a mononuclear high-spin Fe3+ chelate resulting in substantial T1 -relaxivity increase. The data communicated demonstrate proof of concept for a novel and effective strategy to exert biochemical control over aqueous Fe3+ magnetic, structural, and relaxometric properties.
Collapse
Affiliation(s)
- Huan Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/ Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Michael B. Cleary
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/ Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Luke C. Lewis
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Jeffrey W. Bacon
- Department of Chemistry, Boston University, Boston, Massachusetts, 02215, United States
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/ Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States,Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital/ Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Hannah S. Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/ Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States,Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital/ Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
11
|
Wang H, Cleary MB, Lewis LC, Bacon JW, Caravan P, Shafaat HS, Gale EM. Enzyme Control Over Ferric Iron Magnetostructural Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huan Wang
- Athinoula A. Martinos Center for Biomedical Imaging
- Institute for Innovation in Imaging Department of Radiology Massachusetts General Hospital/Harvard Medical School 149 Thirteenth Street Charlestown MA 02129 USA
| | - Michael B. Cleary
- Athinoula A. Martinos Center for Biomedical Imaging
- Institute for Innovation in Imaging Department of Radiology Massachusetts General Hospital/Harvard Medical School 149 Thirteenth Street Charlestown MA 02129 USA
| | - Luke C. Lewis
- Department of Chemistry and Biochemistry The Ohio State University Columbus OH 43210 USA
| | | | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging
- Institute for Innovation in Imaging Department of Radiology Massachusetts General Hospital/Harvard Medical School 149 Thirteenth Street Charlestown MA 02129 USA
| | - Hannah S. Shafaat
- Department of Chemistry and Biochemistry The Ohio State University Columbus OH 43210 USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging
- Institute for Innovation in Imaging Department of Radiology Massachusetts General Hospital/Harvard Medical School 149 Thirteenth Street Charlestown MA 02129 USA
| |
Collapse
|
12
|
Kras EA, Abozeid SM, Eduardo W, Spernyak JA, Morrow JR. Comparison of phosphonate, hydroxypropyl and carboxylate pendants in Fe(III) macrocyclic complexes as MRI contrast agents. J Inorg Biochem 2021; 225:111594. [PMID: 34517167 PMCID: PMC9124524 DOI: 10.1016/j.jinorgbio.2021.111594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/09/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022]
Abstract
Fe(III) macrocyclic complexes containing a macrocycle and three pendant groups including phosphonate (NOTP =1,4,7-triazacyclononane-1,4,7-triyl-tris(methylenephosphonic acid), carboxylate (NOTA = 1,4,7 - triazacyclononane - N,N',N″ - triacetate) or hydroxypropyl (NOHP =(2S,2'S,2"S)-1,1',1″-(1,4,7-triazonane-1,4,7-triyl)tris(propan-2-ol)) were studied in order to compare the effect of these donor groups on solution chemistry and water proton relaxivity. All three complexes, Fe(NOTP), Fe(NOHP) and Fe(NOTA), display a large degree of kinetic inertness to dissociation in the presence of phosphate and carbonate, under acidic conditions of 100 mM HCl or 1 M HCl or to trans-metalation with Zn(II). The r1 proton relaxivity of the complexes at 1.4 T, 33 °C is compared over the pH range of 1 to 10. At pH 7.4, 33 °C, 1.4 T, Fe(NOHP) has the largest relaxivity (1.5 mM-1 s-1), Fe(NOTP) is second at 1.0 mM-1 s-1, whereas Fe(NOTA) is the lowest at 0.61 mM-1 s-1. Fe(NOTP), Fe(NOHP) and Fe(NOTA) all show an increase in relaxivity at very acidic pH values (< 3) that is consistent with an acid-catalyzed process. Variable temperature 17O NMR studies at near neutral pH are consistent with the absence of an inner-sphere water molecule for Fe(NOTP) and Fe(NOHP), supporting second-sphere or outer-sphere water contributions to proton relaxation. Fe(NOTP) shows contrast enhancement in T1 weighted MRI studies in mice and clears through a renal pathway.
Collapse
Affiliation(s)
- Elizabeth A Kras
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, United States of America
| | - Samira M Abozeid
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, United States of America; Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, 35516 Mansoura, Egypt
| | - Waldine Eduardo
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, United States of America
| | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Institute, Buffalo, New York 14263, United States of America
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, United States of America.
| |
Collapse
|
13
|
Abozeid SM, Chowdhury MSI, Asik D, Spernyak JA, Morrow JR. Liposomal Fe(III) Macrocyclic Complexes with Hydroxypropyl Pendants as MRI Probes. ACS APPLIED BIO MATERIALS 2021; 4:7951-7960. [PMID: 35006776 PMCID: PMC9124523 DOI: 10.1021/acsabm.1c00879] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Paramagnetic liposomes containing Fe(III) complexes were prepared by incorporation of mononuclear (Fe(L1) or Fe(L3)) or dinuclear (Fe2(L2)) coordination complexes of 1,4,7-triazacyclononane macrocycles containing 2-hydroxypropyl pendant groups. Two different types of paramagnetic liposomes were prepared. The first type, LipoA, has the mononuclear Fe(L1) complex loaded into the internal aqueous core. The second type, LipoB, has the amphiphilic Fe(L3) complex inserted into the liposomal bilayer and the internal aqueous core loaded with either Fe(L1) (LipoB1) or Fe2(L2) (LipoB2). LipoA enhances both T1 and T2 water proton relaxation rates. Treatment of LipoA with osmotic gradients to produce a nonspherical liposome produces a liposome with a chemical exchange saturation transfer effect as shown by an asymmetry analysis but only at high osmolarity. LipoB1, which contains an amphiphilic complex in the liposomal bilayer, produced a broadened Z-spectrum upon treatment of the liposome with osmotic gradients. The r1 relaxivity of LipoB1 and LipoB2 were higher than the r1 relaxivity of LipoA on a per Fe basis, suggesting an important contribution from the amphiphilic Fe(III) center. The r1 relaxivities of paramagnetic liposomes are relatively constant over a range of magnetic field strengths (1.4-9.4 T), with the ratio of r2/r1 substantially increasing at high field strengths. MRI studies of LipoB1 in mice showed prolonged contrast enhancement in blood compared to the clinically employed Gd(DOTA), which was injected at a 2-fold higher dose per metal than the Fe(III)-loaded liposomes.
Collapse
Affiliation(s)
- Samira M. Abozeid
- Department of Chemistry, University at Buffalo, The State University of New York Amherst, NY 14260, United States
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, 35516 Mansoura, Egypt
| | - Md Saiful I. Chowdhury
- Department of Chemistry, University at Buffalo, The State University of New York Amherst, NY 14260, United States
| | - Didar Asik
- Department of Chemistry, University at Buffalo, The State University of New York Amherst, NY 14260, United States
| | - Joseph A. Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, New York 14263 United States
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, The State University of New York Amherst, NY 14260, United States
| |
Collapse
|
14
|
Palagi L, Di Gregorio E, Costanzo D, Stefania R, Cavallotti C, Capozza M, Aime S, Gianolio E. Fe(deferasirox) 2: An Iron(III)-Based Magnetic Resonance Imaging T1 Contrast Agent Endowed with Remarkable Molecular and Functional Characteristics. J Am Chem Soc 2021; 143:14178-14188. [PMID: 34432442 DOI: 10.1021/jacs.1c04963] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The search for alternatives to Gd-containing magnetic resonance imaging (MRI) contrast agents addresses the field of Fe(III)-bearing species with the expectation that the use of an essential metal ion may avoid the issues raised by the exogenous Gd. Attention is currently devoted to highly stable Fe(III) complexes with hexacoordinating ligands, although they may lack any coordinated water molecule. We found that the hexacoordinated Fe(III) complex with two units of deferasirox, a largely used iron sequestering agent, owns properties that can make it a viable alternative to Gd-based agents. Fe(deferasirox)2 displays an outstanding thermodynamic stability, a high binding affinity to human serum albumin (three molecules of complex are simultaneously bound to the protein), and a good relaxivity that increases in the range 20-80 MHz. The relaxation enhancement is due to second sphere water molecules likely forming H-bonds with the coordinating phenoxide oxygens. A further enhancement was observed upon the formation of the supramolecular adduct with albumin. The binding sites of Fe(deferasirox)2 on albumin were characterized by relaxometric competitive assays. Preliminary in vivo imaging studies on a tumor-bearing mouse model indicate that, on a 3 T MRI scanner, the contrast ability of Fe(deferasirox)2 is comparable to the one shown by the commercial Gd(DTPA) agent. ICP-MS analyses on blood samples withdrawn from healthy mice administered with a dose of 0.1 mmol/kg of Fe(deferasirox)2 showed that the complex is completely removed in 24 h.
Collapse
Affiliation(s)
- Lorenzo Palagi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Diana Costanzo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Rachele Stefania
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | | | - Martina Capozza
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
- IRCCS SDN, Via E. Gianturco 113, Napoli 80143, Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| |
Collapse
|
15
|
Asik D, Abozeid SM, Turowski SG, Spernyak JA, Morrow JR. Dinuclear Fe(III) Hydroxypropyl-Appended Macrocyclic Complexes as MRI Probes. Inorg Chem 2021; 60:8651-8664. [PMID: 34110140 PMCID: PMC9942924 DOI: 10.1021/acs.inorgchem.1c00634] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Four high-spin Fe(III) macrocyclic complexes, including three dinuclear and one mononuclear complex, were prepared toward the development of more effective iron-based magnetic resonance imaging (MRI) contrast agents. All four complexes contain a 1,4,7-triazacyclononane macrocyclic backbone with two hydroxypropyl pendant groups, an ancillary aryl or biphenyl group, and a coordination site for a water ligand. The pH potentiometric titrations support one or two deprotonations of the complexes, most likely deprotonation of hydroxypropyl groups at near-neutral pH. Variable-temperature 17O NMR studies suggest that the inner-sphere water ligand is slow to exchange with bulk water on the NMR time scale. Water proton T1 relaxation times measured for solutions of the Fe(III) complexes at pH 7.2 showed that the dinuclear complexes have a 2- to 3-fold increase in r1 relaxivity in comparison to the mononuclear complex per molecule at field strengths ranging from 1.4 T to 9.4 T. The most effective agent, a dinuclear complex with macrocycles linked through para-substitution of an aryl group (Fe2(PARA)), has an r1 of 6.7 mM-1 s-1 at 37 °C and 4.7 T or 3.3 mM-1 s-1 per iron center in the presence of serum albumin and shows enhanced blood pool and kidney contrast in mice MRI studies.
Collapse
Affiliation(s)
- Didar Asik
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, New York 14260, United States
| | - Samira M. Abozeid
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, New York 14260, United States
| | - Steven G. Turowski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, New York 14263 United States
| | - Joseph A. Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, New York 14263 United States
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
16
|
Saccharomyces cerevisiae and Candida albicans Yeast Cells Labeled with Fe(III) Complexes as MRI Probes. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of MRI probes is of interest for labeling antibiotic-resistant fungal infections based on yeast. Our work showed that yeast cells can be labeled with high-spin Fe(III) complexes to produce enhanced T2 water proton relaxation. These Fe(III)-based macrocyclic complexes contained a 1,4,7-triazacyclononane framework, two pendant alcohol groups, and either a non-coordinating ancillary group and a bound water molecule or a third coordinating pendant. The Fe(III) complexes that had an open coordination site associated strongly with Saccharomyces cerevisiae upon incubation, as shown by screening using Z-spectra analysis. The incubation of one Fe(III) complex with either Saccharomyces cerevisiae or Candida albicans yeast led to an interaction with the β-glucan-based cell wall, as shown by the ready retrieval of the complex by the bidentate chelator called maltol. Other conditions, such as a heat shock treatment of the complexes, produced Fe(III) complex uptake that could not be reversed by the addition of maltol. Appending a fluorescence dye to Fe(TOB) led to uptake through secretory pathways, as shown by confocal fluorescence microscopy and by the incomplete retrieval of the Fe(III) complex by the maltol treatment. Yeast cells that were labeled with these Fe(III) complexes displayed enhanced water proton T2 relaxation, both for S. cerevisiae and for yeast and hyphal forms of C. albicans.
Collapse
|
17
|
Huang Y, Cho HJ, Bandara N, Sun L, Tran D, Rogers BE, Mirica LM. Metal-chelating benzothiazole multifunctional compounds for the modulation and 64Cu PET imaging of Aβ aggregation. Chem Sci 2020; 11:7789-7799. [PMID: 34094152 PMCID: PMC8163150 DOI: 10.1039/d0sc02641g] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
While Alzheimer's Disease (AD) is the most common neurodegenerative disease, there is still a dearth of efficient therapeutic and diagnostic agents for this disorder. Reported herein are a series of new multifunctional compounds (MFCs) with appreciable affinity for amyloid aggregates that can be potentially used for both the modulation of Aβ aggregation and its toxicity, as well as positron emission tomography (PET) imaging of Aβ aggregates. Firstly, among the six compounds tested HYR-16 is shown to be capable to reroute the toxic Cu-mediated Aβ oligomerization into the formation of less toxic amyloid fibrils. In addition, HYR-16 can also alleviate the formation of reactive oxygen species (ROS) caused by Cu2+ ions through Fenton-like reactions. Secondly, these MFCs can be easily converted to PET imaging agents by pre-chelation with the 64Cu radioisotope, and the Cu complexes of HYR-4 and HYR-17 exhibit good fluorescent staining and radiolabeling of amyloid plaques both in vitro and ex vivo. Importantly, the 64Cu-labeled HYR-17 is shown to have a significant brain uptake of up to 0.99 ± 0.04 %ID per g. Overall, by evaluating the various properties of these MFCs valuable structure-activity relationships were obtained that should aid the design of improved therapeutic and diagnostic agents for AD.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Avenue Urbana Illinois 61801 USA
| | - Hong-Jun Cho
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Avenue Urbana Illinois 61801 USA
| | - Nilantha Bandara
- Department of Radiation Oncology, Washington University School of Medicine St. Louis Missouri 63108 USA
| | - Liang Sun
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Avenue Urbana Illinois 61801 USA
| | - Diana Tran
- Department of Radiation Oncology, Washington University School of Medicine St. Louis Missouri 63108 USA
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine St. Louis Missouri 63108 USA
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Avenue Urbana Illinois 61801 USA
- Hope Center for Neurological Disorders, Washington University School of Medicine St. Louis MO 63110 USA
| |
Collapse
|
18
|
Patel A, Asik D, Snyder EM, Dilillo AE, Cullen PJ, Morrow JR. Binding and Release of FeIII Complexes from Glucan Particles for the Delivery of T 1 MRI Contrast Agents. ChemMedChem 2020; 15:1050-1057. [PMID: 32168421 DOI: 10.1002/cmdc.202000003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Yeast-derived β-glucan particles (GPs) are a class of microcarriers under development for the delivery of drugs and imaging agents to immune-system cells for theranostic approaches. However, the encapsulation of hydrophilic imaging agents in the porous GPs is challenging. Here, we show that the unique coordination chemistry of FeIII -based macrocyclic T1 MRI contrast agents permits facile encapsulation in GPs. Remarkably, GPs labeled with the simple FeIII complexes are stable under physiologically relevant conditions, despite the absence of amphiphilic groups. In contrast to the free FeIII coordination complex, the labeled FeIII -GPs have lowered T1 relaxivity and act as a silenced form of the contrast agent. Addition of a fluorescent tag to the FeIII complex produces a bimodal agent to further enable tracking of the nanoparticles and to monitor release. Treatment of the iron-labeled GPs with a maltol chelator or with mildly acidic conditions releases the intact iron complex and restores enhanced T1 relaxation of the water protons.
Collapse
Affiliation(s)
- Akanksha Patel
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | - Didar Asik
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | - Eric M Snyder
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | - Alexandra E Dilillo
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | - Paul J Cullen
- Department of Biology, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| |
Collapse
|
19
|
Modulating the Properties of Fe(III) Macrocyclic MRI Contrast Agents by Appending Sulfonate or Hydroxyl Groups. Molecules 2020; 25:molecules25102291. [PMID: 32414058 PMCID: PMC7288058 DOI: 10.3390/molecules25102291] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/30/2022] Open
Abstract
Complexes of Fe(III) that contain a triazacyclononane (TACN) macrocycle, two pendant hydroxyl groups, and a third ancillary pendant show promise as MRI contrast agents. The ancillary group plays an important role in tuning the solution relaxivity of the Fe(III) complex and leads to large changes in MRI contrast enhancement in mice. Two new Fe(III) complexes, one with a third coordinating hydroxypropyl pendant, Fe(L2), and one with an anionic non-coordinating sulfonate group, Fe(L1)(OH2), are compared. Both complexes have a deprotonated hydroxyl group at neutral pH and electrode potentials representative of a stabilized trivalent iron center. The r1 relaxivity of the Fe(L1)(OH2) complex is double that of the saturated complex, Fe(L2), at 4.7 T, 37 °C in buffered solutions. However, variable-temperature 17O-NMR experiments show that the inner-sphere water of Fe(L1)(OH2) does not exchange rapidly with bulk water under these conditions. The pendant sulfonate group in Fe(L1)(OH2) confers high solubility to the complex in comparison to Fe(L2) or previously studied analogues with benzyl groups. Dynamic MRI studies of the two complexes showed major differences in their pharmacokinetics clearance rates compared to an analogue containing a benzyl ancillary group. Rapid blood clearance and poor binding to serum albumin identify Fe(L1)(OH2) for development as an extracellular fluid contrast agent.
Collapse
|