1
|
Nachimuthu S, Xie GC, Jiang JC. Unraveling the catalytic performance of RuO 2(1 1 0) for highly-selective ethylene production from methane at low temperature: Insights from first-principles and microkinetic simulations. J Colloid Interface Sci 2025; 678:992-1003. [PMID: 39270399 DOI: 10.1016/j.jcis.2024.09.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Despite significant progress in low-temperature methane (CH4) activation, commercial viability, specifically obtaining high yields of C1/C2 products, remains a challenge. High desorption energy (>2 eV) and overoxidation of the target products are key limitations in CH4 utilization. Herein, we employ first-principles density functional theory (DFT) and microkinetics simulations to investigate the CH4 activation and the feasibility of its conversion to ethylene (C2H4) on the RuO2 (1 1 0) surface. The CH activation and CH4 dehydrogenation processes are thoroughly investigated, with a particular focus on the diffusion of surface intermediates. The results show that the RuO2 (1 1 0) surface exhibits high reactivity in CH4 activation (Ea = 0.60 eV), with CH3 and CH2 are the predominant species, and CH2 being the most mobile intermediate on the surface. Consequently, self-coupling of CH2* species via CC coupling occurs more readily, yielding C2H4, a potential raw material for the chemical industry. More importantly, we demonstrate that the produced C2H4 can easily desorb under mild conditions due to its low desorption energy of 0.97 eV. Microkinetic simulations based on the DFT energetics indicate that CH4 activation can occur at temperatures below 200 K, and C2H4 can be desorbed at room temperature. Further, the selectivity analysis predicts that C2H4 is the major product at low temperatures (300-450 K) with 100 % selectivity, then competes with formaldehyde at intermediate temperatures in the CH4 conversion over RuO2 (1 1 0) surface. The present findings suggest that the RuO2 (1 1 0) surface is a potential catalyst for facilitating ethylene production under mild conditions.
Collapse
Affiliation(s)
- Santhanamoorthi Nachimuthu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Guan-Cheng Xie
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jyh-Chiang Jiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| |
Collapse
|
2
|
Brenig A, Fischer JWA, Klose D, Jeschke G, van Bokhoven JA, Sushkevich VL. Redox and Kinetic Properties of Composition-Dependent Active Sites in Copper-Exchanged Chabazite for Direct Methane-to-Methanol Oxidation. Angew Chem Int Ed Engl 2024; 63:e202411662. [PMID: 39054903 DOI: 10.1002/anie.202411662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The CH4 oxidation performance of Cu-chabazite zeolites characterized by distinct Si/Al ratios and Cu loadings has been studied and the observed variations in reactivity have been correlated to the differences in the nature of the formed active centers. Plug flow reactor tests, in situ Fourier-transform infrared, and X-ray absorption spectroscopy demonstrate that a decrease in Cu loading shifts the reactivity/redox profile to higher temperatures and increases the CH3OH selectivity and Cu-efficiency. In situ electron paramagnetic resonance, Raman, ultraviolet-visible, Fourier-transform infrared, and photoluminescence spectroscopies reveal that this behavior is associated with the presence of monomeric Cu active sites, including bare Cu2+ and [CuOH]+ present at low Si/Al ratio and Cu loading. Formation of two distinct [Cu2(μ-O)]2+ moieties at higher Si/Al ratio or Cu loading forces these trends into the opposite direction. Operando electron paramagnetic resonance and ultraviolet-visible spectroscopy show that the apparent activation energy of monomeric Cu active species decreases with increasing Si/Al ratio, whereas the one of dimeric centers is unaffected.
Collapse
Affiliation(s)
- Andreas Brenig
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Jörg W A Fischer
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Daniel Klose
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Gunnar Jeschke
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Vitaly L Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| |
Collapse
|
3
|
Heyer AJ, Ma J, Plessers D, Braun A, Bols ML, Rhoda HM, Schoonheydt RA, Sels BF, Solomon EI. Spectroscopic Investigation of the Role of Water in Copper Zeolite Methane Oxidation. J Am Chem Soc 2024; 146:21208-21213. [PMID: 39046226 DOI: 10.1021/jacs.4c06010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Methane is one of the most potent greenhouse gases; developing technology for its abatement is essential for combating climate change. Copper zeolites can activate methane at low temperatures and pressures, demonstrating promise for this technology. However, a barrier to industrial implementation is the inability to recycle the Cu(II) active site. Anaerobic active site regeneration has been reported for copper-loaded mordenite, where it is proposed that water oxidizes Cu(I) formed from the methane reaction, producing H2 gas as a byproduct. However, this result has been met with skepticism given the overall reaction is thermodynamically unfavorable. In this study, we use X-ray absorption and electron paramagnetic resonance spectroscopies to study the role of water in copper zeolite methane oxidation. We find that water does not oxidize Cu(I) to Cu(II) in CH4-reacted Cu-MOR. Further, using isotope label mass spectrometry, we detail an alternate source of the hydrogen byproduct. We uncover that, although water does not oxidize Cu(I), it has the potential to facilitate low temperature methane abatement through promotion of product decomposition to carbon dioxide and H2.
Collapse
Affiliation(s)
- Alexander J Heyer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven-University of Leuven, Leuven B-3001, Belgium
| | - Jing Ma
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven-University of Leuven, Leuven B-3001, Belgium
| | - Dieter Plessers
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven-University of Leuven, Leuven B-3001, Belgium
| | - Augustin Braun
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Max L Bols
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven-University of Leuven, Leuven B-3001, Belgium
| | - Hannah M Rhoda
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert A Schoonheydt
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven-University of Leuven, Leuven B-3001, Belgium
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven-University of Leuven, Leuven B-3001, Belgium
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
4
|
Yu B, Cheng L, Dai S, Jiang Y, Yang B, Li H, Zhao Y, Xu J, Zhang Y, Pan C, Cao X, Zhu Y, Lou Y. Silver and Copper Dual Single Atoms Boosting Direct Oxidation of Methane to Methanol via Synergistic Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302143. [PMID: 37401146 PMCID: PMC10502841 DOI: 10.1002/advs.202302143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/04/2023] [Indexed: 07/05/2023]
Abstract
Rationally constructing atom-precise active sites is highly important to promote their catalytic performance but still challenging. Herein, this work designs and constructs ZSM-5 supported Cu and Ag dual single atoms as a proof-of-concept catalyst (Ag1 -Cu1 /ZSM-5 hetero-SAC (single-atom catalyst)) to boost direct oxidation of methane (DOM) by H2 O2 . The Ag1 -Cu1 /ZSM-5 hetero-SAC synthesized via a modified co-adsorption strategy yields a methanol productivity of 20,115 µmol gcat -1 with 81% selectivity at 70 °C within 30 min, which surpasses most of the state-of-the-art noble metal catalysts. The characterization results prove that the synergistic interaction between silver and copper facilitates the formation of highly reactive surface hydroxyl species to activate the C-H bond as well as the activity, selectivity, and stability of DOM compared with SACs, which is the key to the enhanced catalytic performance. This work believes the atomic-level design strategy on dual-single-atom active sites should pave the way to designing advanced catalysts for methane conversion.
Collapse
Affiliation(s)
- Baiyang Yu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122China
| | - Lu Cheng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Computational Chemistry and Research Institute of Industrial CatalysisEast China University of Science and TechnologyShanghai200237China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Bing Yang
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physics457 Zhongshan RoadDalian116023China
| | - Hong Li
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physics457 Zhongshan RoadDalian116023China
| | - Yi Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122China
| | - Jing Xu
- School of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122China
| | - Chengsi Pan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122China
| | - Xiao‐Ming Cao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Computational Chemistry and Research Institute of Industrial CatalysisEast China University of Science and TechnologyShanghai200237China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122China
| |
Collapse
|
5
|
Dummer N, Willock DJ, He Q, Howard MJ, Lewis RJ, Qi G, Taylor SH, Xu J, Bethell D, Kiely CJ, Hutchings GJ. Methane Oxidation to Methanol. Chem Rev 2023; 123:6359-6411. [PMID: 36459432 PMCID: PMC10176486 DOI: 10.1021/acs.chemrev.2c00439] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 12/04/2022]
Abstract
The direct transformation of methane to methanol remains a significant challenge for operation at a larger scale. Central to this challenge is the low reactivity of methane at conditions that can facilitate product recovery. This review discusses the issue through examination of several promising routes to methanol and an evaluation of performance targets that are required to develop the process at scale. We explore the methods currently used, the emergence of active heterogeneous catalysts and their design and reaction mechanisms and provide a critical perspective on future operation. Initial experiments are discussed where identification of gas phase radical chemistry limited further development by this approach. Subsequently, a new class of catalytic materials based on natural systems such as iron or copper containing zeolites were explored at milder conditions. The key issues of these technologies are low methane conversion and often significant overoxidation of products. Despite this, interest remains high in this reaction and the wider appeal of an effective route to key products from C-H activation, particularly with the need to transition to net carbon zero with new routes from renewable methane sources is exciting.
Collapse
Affiliation(s)
- Nicholas
F. Dummer
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - David J. Willock
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Qian He
- Department
of Materials Science and Engineering, National
University of Singapore, Singapore117575, Singapore
| | - Mark J. Howard
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Richard J. Lewis
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Guodong Qi
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology,
Chinese Academy of Sciences, Wuhan430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Stuart H. Taylor
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Jun Xu
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology,
Chinese Academy of Sciences, Wuhan430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Don Bethell
- Department
of Chemistry, University of Liverpool, Crown Street, LiverpoolL69 7ZD, United
Kingdom
| | - Christopher J. Kiely
- Department
of Materials Science and Engineering, Lehigh
University, 5 East Packer
Avenue, Bethlehem, Pennsylvania18015, United States
| | - Graham J. Hutchings
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| |
Collapse
|
6
|
Artsiusheuski MA, van Bokhoven JA, Sushkevich VL. Structure of Selective and Nonselective Dicopper (II) Sites in CuMFI for Methane Oxidation to Methanol. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mikalai A. Artsiusheuski
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232Villigen PSI, Switzerland
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093Zurich, Switzerland
| | - Jeroen A. van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232Villigen PSI, Switzerland
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093Zurich, Switzerland
| | - Vitaly L. Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232Villigen PSI, Switzerland
| |
Collapse
|
7
|
Kolganov AA, Gabrienko AA, Stepanov AG. Reaction of Methane with Benzene and CO on Cu-Modified ZSM-5 Zeolite Investigated by 13C MAS NMR Spectroscopy. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Álvarez M, Marín P, Ordóñez S. Upgrading of methane emissions via chemical looping over copper-zeolites: Experiments and modelling. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Kumar P, Al-Attas TA, Hu J, Kibria MG. Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS NANO 2022; 16:8557-8618. [PMID: 35638813 DOI: 10.1021/acsnano.2c02464] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Direct conversion of methane (CH4) to C1-2 liquid oxygenates is a captivating approach to lock carbons in transportable value-added chemicals, while reducing global warming. Existing approaches utilizing the transformation of CH4 to liquid fuel via tandemized steam methane reforming and the Fischer-Tropsch synthesis are energy and capital intensive. Chemocatalytic partial oxidation of methane remains challenging due to the negligible electron affinity, poor C-H bond polarizability, and high activation energy barrier. Transition-metal and stoichiometric catalysts utilizing harsh oxidants and reaction conditions perform poorly with randomized product distribution. Paradoxically, the catalysts which are active enough to break C-H also promote overoxidation, resulting in CO2 generation and reduced carbon balance. Developing catalysts which can break C-H bonds of methane to selectively make useful chemicals at mild conditions is vital to commercialization. Single atom catalysts (SACs) with specifically coordinated metal centers on active support have displayed intrigued reactivity and selectivity for methane oxidation. SACs can significantly reduce the activation energy due to induced electrostatic polarization of the C-H bond to facilitate the accelerated reaction rate at the low reaction temperature. The distinct metal-support interaction can stabilize the intermediate and prevent the overoxidation of the reaction products. The present review accounts for recent progress in the field of SACs for the selective oxidation of CH4 to C1-2 oxygenates. The chemical nature of catalytic sites, effects of metal-support interaction, and stabilization of intermediate species on catalysts to minimize overoxidation are thoroughly discussed with a forward-looking perspective to improve the catalytic performance.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Tareq A Al-Attas
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
10
|
Yousefzadeh H, Bozbag SE, Erkey C. Supercritical ion exchange: A new method to synthesize copper exchanged zeolites. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Panthi D, Adeyiga O, Odoh SO. DFT Analysis of Methane C-H Activation and Over-Oxidation by [Cu 2 O] 2+ and [Cu 2 O 2 ] 2+ Sites in Zeolite Mordenite: Intra- versus Inter-site Over-Oxidation. Chemphyschem 2021; 22:2517-2525. [PMID: 34519406 DOI: 10.1002/cphc.202100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Indexed: 11/06/2022]
Abstract
Methane over-oxidation by copper-exchanged zeolites prevents realization of high-yield catalytic conversion. However, there has been little description of the mechanism for methane over-oxidation at the copper active sites of these zeolites. Using density functional theory (DFT) computations, we reported that tricopper [Cu3 O3 ]2+ active sites can over-oxidize methane. However, the role of [Cu3 O3 ]2+ sites in methane-to-methanol conversion remains under debate. Here, we examine methane over-oxidation by dicopper [Cu2 O]2+ and [Cu2 O2 ]2+ sites using DFT in zeolite mordenite (MOR). For [Cu2 O2 ]2+ , we considered the μ-(η2 :η2 ) peroxo-, and bis(μ-oxo) motifs. These sites were considered in the eight-membered (8MR) ring of MOR. μ-(η2 :η2 ) peroxo sites are unstable relative to the bis(μ-oxo) motif with a small interconversion barrier. Unlike [Cu2 O]2+ which is active for methane C-H activation, [Cu2 O2 ]2+ has a very large methane C-H activation barrier in the 8MR. Stabilization of methanol and methyl at unreacted dicopper sites however leads to over-oxidation via sequential hydrogen atom abstraction steps. For methanol, these are initiated by abstraction of the CH3 group, followed by OH and can proceed near 200 °C. Thus, for [Cu2 O]2+ and [Cu2 O2 ]2+ species, over-oxidation is an inter-site process. We discuss the implications of these findings for methanol selectivity, especially in comparison to the intra-site process for [Cu3 O3 ]2+ sites and the role of Brønsted acid sites.
Collapse
Affiliation(s)
- Dipak Panthi
- Department of Chemistry, University of Nevada Reno, 1664N. Virginia Street, Reno, NV 89557-0216, USA
| | - Olajumoke Adeyiga
- Department of Chemistry, University of Nevada Reno, 1664N. Virginia Street, Reno, NV 89557-0216, USA
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada Reno, 1664N. Virginia Street, Reno, NV 89557-0216, USA
| |
Collapse
|
12
|
Mizuno SC, Dulnee S, Pereira TC, Passini RJ, Urquieta-Gonzalez EA, Gallo JMR, Santos JB, Bueno JM. Stepwise methane to methanol conversion: Effect of copper loading on the formation of active species in copper-exchanged mordenite. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Artsiusheuski MA, Verel R, van Bokhoven JA, Sushkevich VL. Methane Transformation over Copper-Exchanged Zeolites: From Partial Oxidation to C–C Coupling and Formation of Hydrocarbons. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mikalai A. Artsiusheuski
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - René Verel
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Jeroen A. van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Vitaly L. Sushkevich
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
14
|
Xu R, Liu N, Dai C, Li Y, Zhang J, Wu B, Yu G, Chen B. H 2 O-Built Proton Transfer Bridge Enhances Continuous Methane Oxidation to Methanol over Cu-BEA Zeolite. Angew Chem Int Ed Engl 2021; 60:16634-16640. [PMID: 33982395 DOI: 10.1002/anie.202105167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 11/09/2022]
Abstract
Direct oxidation of methane to methanol (DMTM) is a big challenge in C1 chemistry. We present a continuous N2 O-DMTM investigation by simultaneously introducing 10 vol % H2 O into the reaction system over Cu-BEA zeolites. Combining a D2 O isotopic tracer technique and ab initio molecular dynamics (AIMD) simulation, we for the first time demonstrate that the H2 O molecules can participate in the reaction through a proton transfer route, wherein the H2 O molecules can build a high-speed proton transfer bridge between the generated moieties of CH3 - and OH- over the evolved mono(μ-oxo) dicopper ([Cu-O-Cu]2+ ) active site, thereby pronouncedly boosting the CH3 OH selectivity (3.1→71.6 %), productivity (16.8→242.9 μmol gcat -1 h-1 ) and long-term reaction stability (10→70 h) relative to the scenario of absence of H2 O. Unravelling the proton transfer of H2 O over the dicopper [Cu-O-Cu]2+ site would substantially contribute to highly efficient catalyst designs for the continuous DMTM.
Collapse
Affiliation(s)
- Ruinian Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Ning Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Chengna Dai
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jie Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bin Wu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Biaohua Chen
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P. R. China.,Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
15
|
Sushkevich VL, Artsiusheuski M, Klose D, Jeschke G, Bokhoven JA. Identification of Kinetic and Spectroscopic Signatures of Copper Sites for Direct Oxidation of Methane to Methanol. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vitaly L. Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
| | - Mikalai Artsiusheuski
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
- Institute for Chemistry and Bioengineering ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Daniel Klose
- Laboratory of Physical Chemistry ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Jeroen A. Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
- Institute for Chemistry and Bioengineering ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| |
Collapse
|
16
|
Álvarez M, Marín P, Ordóñez S. Harnessing of Diluted Methane Emissions by Direct Partial Oxidation of Methane to Methanol over Cu/Mordenite. Ind Eng Chem Res 2021; 60:9409-9417. [PMID: 35273425 PMCID: PMC8900128 DOI: 10.1021/acs.iecr.1c01069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 11/28/2022]
Abstract
![]()
The upgrading of diluted methane
emissions into valuable products
can be accomplished at low temperatures (200 °C) by the direct
partial oxidation of methanol over copper-exchanged zeolite catalysts.
The reaction has been studied in a continuous fixed-bed reactor loaded
with a Cu–mordenite catalyst, according to a three-step cyclic
process: adsorption of methane, desorption of methanol, and reactivation
of the catalyst. The purpose of the work is the use of methane emissions
as feedstocks, which is challenging due to their low methane concentration
and the presence of oxygen. Methane concentration had a marked influence
on methane adsorption and methanol production (decreased from 164
μmol/g Cu for pure methane to 19 μmol/g Cu for 5% methane).
The presence of oxygen, even in low concentrations (2.5%), reduced
methane adsorption drastically. However, methanol production was only
affected slightly (average decrease of 9%), concluding that methane
adsorbed on the active centers yielding methanol is not influenced
by oxygen.
Collapse
Affiliation(s)
- Mauro Álvarez
- Catalysis, Reactors and Control Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Faculty of Chemistry, Julián Clavería 8, 33006 Oviedo, Spain
| | - Pablo Marín
- Catalysis, Reactors and Control Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Faculty of Chemistry, Julián Clavería 8, 33006 Oviedo, Spain
| | - Salvador Ordóñez
- Catalysis, Reactors and Control Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Faculty of Chemistry, Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
17
|
Lyu Y, Jocz JN, Xu R, Williams OC, Sievers C. Selective Oxidation of Methane to Methanol over Ceria‐Zirconia Supported Mono and Bimetallic Transition Metal Oxide Catalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202100268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yimeng Lyu
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology 311 Ferst Dr. NW Atlanta GA-30332 USA
| | - Jennifer N. Jocz
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology 311 Ferst Dr. NW Atlanta GA-30332 USA
| | - Rui Xu
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology 311 Ferst Dr. NW Atlanta GA-30332 USA
| | - Olivia C. Williams
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology 311 Ferst Dr. NW Atlanta GA-30332 USA
| | - Carsten Sievers
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology 311 Ferst Dr. NW Atlanta GA-30332 USA
| |
Collapse
|
18
|
Xu R, Liu N, Dai C, Li Y, Zhang J, Wu B, Yu G, Chen B. H
2
O‐Built Proton Transfer Bridge Enhances Continuous Methane Oxidation to Methanol over Cu‐BEA Zeolite. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ruinian Xu
- Faculty of Environment and Life Beijing University of Technology Beijing 100124 P. R. China
| | - Ning Liu
- Faculty of Environment and Life Beijing University of Technology Beijing 100124 P. R. China
| | - Chengna Dai
- Faculty of Environment and Life Beijing University of Technology Beijing 100124 P. R. China
| | - Yan Li
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Jie Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Bin Wu
- Faculty of Environment and Life Beijing University of Technology Beijing 100124 P. R. China
| | - Gangqiang Yu
- Faculty of Environment and Life Beijing University of Technology Beijing 100124 P. R. China
| | - Biaohua Chen
- Faculty of Environment and Life Beijing University of Technology Beijing 100124 P. R. China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 P. R. China
| |
Collapse
|
19
|
Sushkevich VL, Artsiusheuski M, Klose D, Jeschke G, van Bokhoven JA. Identification of Kinetic and Spectroscopic Signatures of Copper Sites for Direct Oxidation of Methane to Methanol. Angew Chem Int Ed Engl 2021; 60:15944-15953. [PMID: 33905160 DOI: 10.1002/anie.202101628] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/16/2021] [Indexed: 11/09/2022]
Abstract
Copper-exchanged zeolites of different topologies possess high activity in the direct conversion of methane to methanol via the chemical looping approach. Despite a large number of studies, identification of the active sites, and especially their intrinsic kinetic characteristics remain incomplete and ambiguous. In the present work, we collate the kinetic behavior of different copper species with their spectroscopic identities and track the evolution of various copper motifs during the reaction. Using time-resolved UV/Vis and in situ EPR, XAS, and FTIR spectroscopies, two types of copper monomers were identified, one of which is active in the reaction with methane, in addition to a copper dimeric species with the mono-μ-oxo structure. Kinetic measurements showed that the reaction rate of the copper monomers is somewhat slower than that of the dicopper mono-μ-oxo species, while the activation energy is two times lower.
Collapse
Affiliation(s)
- Vitaly L Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Mikalai Artsiusheuski
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.,Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Daniel Klose
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Jeroen A van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.,Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| |
Collapse
|
20
|
Adeyiga O, Odoh SO. Methane Over-Oxidation by Extra-Framework Copper-Oxo Active Sites of Copper-Exchanged Zeolites: Crucial Role of Traps for the Separated Methyl Group. Chemphyschem 2021; 22:1101-1109. [PMID: 33786957 DOI: 10.1002/cphc.202100103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/30/2021] [Indexed: 11/07/2022]
Abstract
Copper-exchanged zeolites are useful for stepwise conversion of methane to methanol at moderate temperatures. This process also generates some over-oxidation products like CO and CO2 . However, mechanistic pathways for methane over-oxidation by copper-oxo active sites in these zeolites have not been previously described. Adequate understanding of methane over-oxidation is useful for developing systems with higher methanol yields and selectivities. Here, we use density functional theory (DFT) to examine methane over-oxidation by [Cu3 O3 ]2+ active sites in zeolite mordenite MOR. The methyl group formed after activation of a methane C-H bond can be stabilized at a μ-oxo atom of the active site. This μ-(O-CH3 ) intermediate can undergo sequential hydrogen atom abstractions till eventual formation of a copper-monocarbonyl species. Adsorbed formaldehyde, water and formates are also formed during this process. The overall mechanistic path is exothermic, and all intermediate steps are facile at 200 °C. Release of CO from the copper-monocarbonyl costs only 3.4 kcal/mol. Thus, for high methanol selectivities, the methyl group from the first hydrogen atom abstraction step must be stabilized away from copper-oxo active sites. Indeed, it must be quickly trapped at an unreactive site (short diffusion lengths) while avoiding copper-oxo species (large paths between active sites). This stabilization of the methyl group away from the active sites is central to the high methanol selectivities obtained with stepwise methane-to-methanol conversion.
Collapse
Affiliation(s)
- Olajumoke Adeyiga
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV 89557-0216, USA
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV 89557-0216, USA
| |
Collapse
|
21
|
Brezicki G, Zheng J, Paolucci C, Schlögl R, Davis RJ. Effect of the Co-cation on Cu Speciation in Cu-Exchanged Mordenite and ZSM-5 Catalysts for the Oxidation of Methane to Methanol. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gordon Brezicki
- Department of Chemical Engineering, University of Virginia, 102 Engineer’s Way, P.O. Box 400741, Charlottesville, Virginia 22904-4741, United States
| | - Jonathan Zheng
- Department of Chemical Engineering, University of Virginia, 102 Engineer’s Way, P.O. Box 400741, Charlottesville, Virginia 22904-4741, United States
| | - Christopher Paolucci
- Department of Chemical Engineering, University of Virginia, 102 Engineer’s Way, P.O. Box 400741, Charlottesville, Virginia 22904-4741, United States
| | - Robert Schlögl
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Robert J. Davis
- Department of Chemical Engineering, University of Virginia, 102 Engineer’s Way, P.O. Box 400741, Charlottesville, Virginia 22904-4741, United States
| |
Collapse
|
22
|
Knorpp AJ, Pinar AB, Baerlocher C, McCusker LB, Casati N, Newton MA, Checchia S, Meyet J, Palagin D, Bokhoven JA. Paired Copper Monomers in Zeolite Omega: The Active Site for Methane‐to‐Methanol Conversion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Amy J. Knorpp
- Institute for Chemistry and Bioengineering ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Ana B. Pinar
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
| | - Christian Baerlocher
- Institute for Chemistry and Bioengineering ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Lynne B. McCusker
- Department of Materials ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Nicola Casati
- Laboratory for Synchrotron Radiation—Condensed Matter Paul Scherrer Institut 5232 Villigen Switzerland
| | - Mark A. Newton
- Institute for Chemistry and Bioengineering ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Stefano Checchia
- ID 15A European Synchrotron Radiation Facility 71 Avenue des Martyrs 38000 Grenoble France
| | - Jordan Meyet
- Institute for Chemistry and Bioengineering ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Dennis Palagin
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
| | - Jeroen A. Bokhoven
- Institute for Chemistry and Bioengineering ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
| |
Collapse
|
23
|
Knorpp AJ, Pinar AB, Baerlocher C, McCusker LB, Casati N, Newton MA, Checchia S, Meyet J, Palagin D, Bokhoven JA. Paired Copper Monomers in Zeolite Omega: The Active Site for Methane‐to‐Methanol Conversion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/anie.202014030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amy J. Knorpp
- Institute for Chemistry and Bioengineering ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Ana B. Pinar
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
| | - Christian Baerlocher
- Institute for Chemistry and Bioengineering ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Lynne B. McCusker
- Department of Materials ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Nicola Casati
- Laboratory for Synchrotron Radiation—Condensed Matter Paul Scherrer Institut 5232 Villigen Switzerland
| | - Mark A. Newton
- Institute for Chemistry and Bioengineering ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Stefano Checchia
- ID 15A European Synchrotron Radiation Facility 71 Avenue des Martyrs 38000 Grenoble France
| | - Jordan Meyet
- Institute for Chemistry and Bioengineering ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Dennis Palagin
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
| | - Jeroen A. Bokhoven
- Institute for Chemistry and Bioengineering ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
| |
Collapse
|
24
|
Jeong YR, Jung H, Kang J, Han JW, Park ED. Continuous Synthesis of Methanol from Methane and Steam over Copper-Mordenite. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Ri Jeong
- Department of Chemical Engineering and Department of Energy Systems Research, Ajou University 206 World cup-ro, Yeongtong-Gu, Suwon 16499, Republic of Korea
| | - Hyeonjung Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Jongkyu Kang
- Department of Chemical Engineering and Department of Energy Systems Research, Ajou University 206 World cup-ro, Yeongtong-Gu, Suwon 16499, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Eun Duck Park
- Department of Chemical Engineering and Department of Energy Systems Research, Ajou University 206 World cup-ro, Yeongtong-Gu, Suwon 16499, Republic of Korea
| |
Collapse
|
25
|
Kolganov AA, Gabrienko AA, Chernyshov IY, Stepanov AG, Pidko EA. The accuracy challenge of the DFT-based molecular assignment of 13C MAS NMR characterization of surface intermediates in zeolite catalysis. Phys Chem Chem Phys 2020; 22:24004-24013. [PMID: 33075116 DOI: 10.1039/d0cp04439c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The influence of the model and method choice on the DFT predicted 13C NMR chemical shifts of zeolite surface methoxide species has been systematically analyzed. Twelve 13C NMR chemical shift calculation protocols on full periodic and hybrid periodic-cluster DFT calculations with varied structural relaxation procedures are examined. The primary assessment of the accuracy of the computational protocols has been carried out for the Si-O(CH3)-Al surface methoxide species in ZSM-5 zeolite with well-defined experimental NMR parameters (chemical shift, δ(13C) value) as a reference. Different configurations of these surface intermediates and their location inside the ZSM-5 pores are considered explicitly. The predicted δ value deviates by up to ±0.8 ppm from the experimental value of 59 ppm due to the varied confinement of the methoxide species at different zeolite sites (model accuracy). The choice of the exchange-correlation functional (method accuracy) introduces ±1.5 ppm uncertainty in the computed chemical shifts. The accuracy of the predicted 13C NMR chemical shifts for the computational assignment of spectral characteristics of zeolite intermediates has been further analyzed by considering the potential intermediate species formed upon methane activation by Cu/ZSM-5 zeolite. The presence of Cu species in the vicinity of surface methoxide increases the prediction uncertainty to ±2.5 ppm. The full geometry relaxation of the local environment of an active site at an appropriate level of theory is critical to ensure a good agreement between the experimental and computed NMR data. Chemical shifts (δ) calculated via full geometry relaxation of a cluster model of a relevant portion of the zeolite lattice site are in the best agreement with the experimental values. Our analysis indicates that the full geometry optimization of a cluster model at the PBE0-D3/6-311G(d,p) level of theory followed by GIAO/PBE0-D3/aug-cc-pVDZ calculations is the most suitable approach for the calculation of 13C chemical shifts of zeolite surface intermediates.
Collapse
Affiliation(s)
- Alexander A Kolganov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia
| | - Anton A Gabrienko
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia and Faculty of Natural Sciences, Department of Physical Chemistry, Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Ivan Yu Chernyshov
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Alexander G Stepanov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia and Faculty of Natural Sciences, Department of Physical Chemistry, Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Evgeny A Pidko
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia and Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.
| |
Collapse
|
26
|
Vargheese V, Kobayashi Y, Oyama ST. The Direct Partial Oxidation of Methane to Dimethyl Ether over Pt/Y
2
O
3
Catalysts Using an NO/O
2
Shuttle. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Vibin Vargheese
- Department of Chemical System Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yasukazu Kobayashi
- Interdisciplinary Research Center for Catalytic Chemistry National Institute of Advanced Industrial Science and Technology (AIST) Central 5, Higashi 1-1-1 Tsukuba Ibaraki 305-8565 Japan
| | - S. Ted Oyama
- School of Chemical Engineering Fuzhou University Fuzhou 350116 China
- Department of Chemical Engineering Virginia Tech Blacksburg VA 24061 USA
- Department of Chemical System Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
27
|
Vargheese V, Kobayashi Y, Oyama ST. The Direct Partial Oxidation of Methane to Dimethyl Ether over Pt/Y 2 O 3 Catalysts Using an NO/O 2 Shuttle. Angew Chem Int Ed Engl 2020; 59:16644-16650. [PMID: 32542891 DOI: 10.1002/anie.202006020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Indexed: 11/07/2022]
Abstract
Using a mixture of NO + O2 as the oxidant enabled the direct selective oxidation of methane to dimethyl ether (DME) over Pt/Y2 O3 . The reaction was carried out in a fixed bed reactor at 0.1 MPa over a temperature range of 275-375 °C. During the activity tests, the only carbon-containing products were DME and CO2 . The DME productivity (μmol gcat -1 h-1 ) was comparable to oxygenate productivities reported in the literature for strong oxidants (N2 O, H2 O2 , O3 ). The NO + O2 mixture formed NO2 , which acted as the oxygen atom carrier for the ultimate oxidant O2 . During the methane partial oxidation reaction, NO and NO2 were not reduced to N2 . In situ FTIR showed the formation of surface nitrate species, which are considered to be key intermediate species for the selective oxidation.
Collapse
Affiliation(s)
- Vibin Vargheese
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yasukazu Kobayashi
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - S Ted Oyama
- School of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
28
|
Kvande K, Pappas DK, Borfecchia E, Lomachenko KA. Advanced X‐ray Absorption Spectroscopy Analysis to Determine Structure‐Activity Relationships for Cu‐Zeolites in the Direct Conversion of Methane to Methanol. ChemCatChem 2020. [DOI: 10.1002/cctc.201902371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Karoline Kvande
- Centre for Materials Science and Nanotechnology Department of Chemistry University of Oslo Sem Sælands vei 26 0371 Oslo Norway
| | - Dimitrios K. Pappas
- Centre for Materials Science and Nanotechnology Department of Chemistry University of Oslo Sem Sælands vei 26 0371 Oslo Norway
| | - Elisa Borfecchia
- Department of Chemistry, NIS Center and INSTM Reference Center University of Turin Via P. Giuria 7 10125 Turin Italy
| | - Kirill A. Lomachenko
- European Synchrotron Radiation Facility 71 Avenue des Martyrs, CS 40220 Grenoble Cedex 9 38043 France
| |
Collapse
|