1
|
Zhao Z, Cheng G, Zhang Y, Han B, Wang X. Metal-Organic-Framework Based Functional Materials for Uranium Recovery: Performance Optimization and Structure/Functionality-Activity Relationships. Chempluschem 2021; 86:1177-1192. [PMID: 34437774 DOI: 10.1002/cplu.202100315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/06/2021] [Indexed: 11/09/2022]
Abstract
Uranium recovery has profound significance in both uranium resource acquisition and pollution treatment. In recent years, metal-organic frameworks (MOFs) have attracted much attention as potential uranium adsorbents owing to their tunable structural topology and designable functionalities. This review explores the research progress in representative classic MOFs (MIL-101, UiO-66, ZIF-8/ZIF-67) and other advanced MOF-based materials for efficient uranium extraction in aqueous or seawater environments. The uranium uptake mechanism of the MOF-based materials is refined, and the structure/functionality-property relationship is further systematically elucidated. By summarizing the typical functionalization and structure design methods, the performance improvement strategies for MOF-based adsorbents are emphasized. Finally, the present challenges and potential opportunities are proposed for the breakthrough of high-performance MOF-based materials in uranium extraction.
Collapse
Affiliation(s)
- Zhiwei Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China.,The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Gong Cheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Yizhe Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Bing Han
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China.,The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| |
Collapse
|
2
|
Yang P, Li S, Liu C, Liu X. Interface-Constrained Layered Double Hydroxides for Stable Uranium Capture in Highly Acidic Industrial Wastewater. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17988-17997. [PMID: 33840190 DOI: 10.1021/acsami.1c01960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low acid endurance of layered double hydroxides (LDHs) limits their uranium(VI) [U(VI)] adsorption capability from harsh industrial wastewater. Here, we demonstrate magnesium-cobalt LDHs (Mg-Co LDHs) anchored in situ onto the pore channel of dendritic fibrous nanosilica (DFNS) via an interface-constrained strategy. The synergy of Mg-Co LDHs and DFNS not only improves the endurance of the Mg-Co LDH under harsh acidic conditions but also increases the number of active sites of DFNS. Thus, DFNS@Mg-Co LDH shows a high U(VI) uptake capacity (1143 mg g-1) at pH = 3 and C0 = 598.7 mg L-1, which is about 4.8-fold higher than that of pristine DFNS. The DFNS@Mg-Co LDH exhibits excellent U(VI) uptake in various background water circumstances due to its acid endurance and highly selective adsorption. This interface-constrained strategy provides LDH materials with durability under extremely acidic conditions along with a high adsorption capacity, which is promising for uranium capture from various water fields.
Collapse
Affiliation(s)
- Peipei Yang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Songwei Li
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|
3
|
Wu F, Liu D, Li G, Li L, Yan L, Hong G, Zhang X. Bayberry tannin directed assembly of a bifunctional graphene aerogel for simultaneous solar steam generation and marine uranium extraction. NANOSCALE 2021; 13:5419-5428. [PMID: 33666637 DOI: 10.1039/d0nr08956g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solar steam generation and marine uranium extraction are promising methods for obtaining sufficient fresh water and nuclear fuel from the ocean, respectively, for overcoming water and energy crises. In this work, a bayberry tannin (BT) directed assembly of a bifunctional graphene aerogel (GA) has been designed for simultaneous solar steam generation (1.80 kg m-2 h-1 with a high solar efficiency of 95.5%) and marine uranium extraction (230.10 mg g-1 within 6 h). BT molecules are uniformly decorated inside the typical porous channels of GA, which integrates the excellent uranium binding of BT and the efficient light-to-heat conversion of GA. It is found that the hydrophilic nature of BT can improve fluid infiltration in the GA matrix for solar steam generation while the steam generation induced transpiration can accelerate the adsorption of uranium ions for marine uranium extraction. The unique bifunctional ability of the BT-GA composite paves a new way to utilize the abundant resources in the ocean.
Collapse
Affiliation(s)
- Fangwu Wu
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P.R. China. and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, P.R. China
| | - Dan Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, Macao. and Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, Macao
| | - Guangyong Li
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P.R. China.
| | - Liqiang Li
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P.R. China.
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry, iChEM, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Guo Hong
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, Macao. and Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, Macao
| | - Xuetong Zhang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P.R. China. and Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK
| |
Collapse
|
4
|
Zeng M, Chen M, Huang D, Lei S, Zhang X, Wang L, Cheng Z. Engineered two-dimensional nanomaterials: an emerging paradigm for water purification and monitoring. MATERIALS HORIZONS 2021; 8:758-802. [PMID: 34821315 DOI: 10.1039/d0mh01358g] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water scarcity has become an increasingly complex challenge with the growth of the global population, economic expansion, and climate change, highlighting the demand for advanced water treatment technologies that can provide clean water in a scalable, reliable, affordable, and sustainable manner. Recent advancements on 2D nanomaterials (2DM) open a new pathway for addressing the grand challenge of water treatment owing to their unique structures and superior properties. Emerging 2D nanostructures such as graphene, MoS2, MXene, h-BN, g-C3N4, and black phosphorus have demonstrated an unprecedented surface-to-volume ratio, which promises ultralow material use, ultrafast processing time, and ultrahigh treatment efficiency for water cleaning/monitoring. In this review, we provide a state-of-the-art account on engineered 2D nanomaterials and their applications in emerging water technologies, involving separation, adsorption, photocatalysis, and pollutant detection. The fundamental design strategies of 2DM are discussed with emphasis on their physicochemical properties, underlying mechanism and targeted applications in different scenarios. This review concludes with a perspective on the pressing challenges and emerging opportunities in 2DM-enabled wastewater treatment and water-quality monitoring. This review can help to elaborate the structure-processing-property relationship of 2DM, and aims to guide the design of next-generation 2DM systems for the development of selective, multifunctional, programmable, and even intelligent water technologies. The global significance of clean water for future generations sheds new light and much inspiration in this rising field to enhance the efficiency and affordability of water treatment and secure a global water supply in a growing portion of the world.
Collapse
Affiliation(s)
- Minxiang Zeng
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Cui W, Li F, Xu R, Zhang C, Chen X, Yan R, Liang R, Qiu J. Regenerable Covalent Organic Frameworks for Photo‐enhanced Uranium Adsorption from Seawater. Angew Chem Int Ed Engl 2020; 59:17684-17690. [DOI: 10.1002/anie.202007895] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Wei‐Rong Cui
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Fang‐Fang Li
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Rui‐Han Xu
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Cheng‐Rong Zhang
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Xiao‐Rong Chen
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Run‐Han Yan
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Ru‐Ping Liang
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Jian‐Ding Qiu
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| |
Collapse
|
6
|
Cui W, Li F, Xu R, Zhang C, Chen X, Yan R, Liang R, Qiu J. Regenerable Covalent Organic Frameworks for Photo‐enhanced Uranium Adsorption from Seawater. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007895] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Wei‐Rong Cui
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Fang‐Fang Li
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Rui‐Han Xu
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Cheng‐Rong Zhang
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Xiao‐Rong Chen
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Run‐Han Yan
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Ru‐Ping Liang
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| | - Jian‐Ding Qiu
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| |
Collapse
|
7
|
Zhang W, Li L, Gao Y, Zhang D. Graphitic carbon nitride-based materials for photocatalytic reduction of U( vi). NEW J CHEM 2020. [DOI: 10.1039/d0nj04519e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This work reports the photocatalytic reduction of U(vi) using g-C3N4-based materials and discusses the factors affecting the photocatalytic reduction of U(vi).
Collapse
Affiliation(s)
- Weizhuo Zhang
- Shaanxi Key Laboratory of Industrial Automation
- School of Mechanical Engineering
- Shaanxi University of Technology
- Hanzhong 723001
- China
| | - Le Li
- Shaanxi Key Laboratory of Industrial Automation
- School of Mechanical Engineering
- Shaanxi University of Technology
- Hanzhong 723001
- China
| | - Yanhong Gao
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application
- School of Chemistry and Environment Science
- Shaanxi University of Technology
- Hanzhong 723001
- China
| | - Dan Zhang
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application
- School of Chemistry and Environment Science
- Shaanxi University of Technology
- Hanzhong 723001
- China
| |
Collapse
|