1
|
Gourdon-Grünewaldt L, Blacque O, Gasser G, Cariou K. Towards Copper(I) Clusters for Photo-Induced Oxidation of Biological Thiols in Living Cells. Chembiochem 2023; 24:e202300496. [PMID: 37752096 DOI: 10.1002/cbic.202300496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
The cell redox balance can be disrupted by the oxidation of biological peptides, eventually leading to cell death, which provides opportunities to develop cytotoxic drugs. With the aim of developing compounds capable of specifically inducing fatal redox reactions upon light irradiation, we have developed a library of copper compounds. This metal is abundant and considered essential for human health, making it particularly attractive for the development of new anticancer drugs. Copper(I) clusters with thiol ligands (including 5 novel ones) have been synthesized and characterized. Structures were elucidated by X-ray diffraction and showed that the compounds are oligomeric clusters. The clusters display high photooxidation capacity towards cysteine - an essential amino acid - upon light irradiation in the visible range (450 nm), while remaining completely inactive in the dark. This photoredox activity against a biological thiol is very encouraging for the development of anticancer photoredox drugs.The in vitro assay on murine colorectal cancer cells (CT26) did not show any toxicity - whether in the dark or when exposed to 450 nm light, likely because of the poor solubility of the complexes in biological medium.
Collapse
Affiliation(s)
- Lisa Gourdon-Grünewaldt
- Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, CNRS, 11 rue Pierre et Marie Curie, 75005, Paris, France
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Gilles Gasser
- Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, CNRS, 11 rue Pierre et Marie Curie, 75005, Paris, France
| | - Kevin Cariou
- Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, CNRS, 11 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
2
|
Heinrich J, Bossak‐Ahmad K, Riisom M, Haeri HH, Steel TR, Hergl V, Langhans A, Schattschneider C, Barrera J, Jamieson SMF, Stein M, Hinderberger D, Hartinger CG, Bal W, Kulak N. Incorporation of β-Alanine in Cu(II) ATCUN Peptide Complexes Increases ROS Levels, DNA Cleavage and Antiproliferative Activity. Chemistry 2021; 27:18093-18102. [PMID: 34658072 PMCID: PMC9299640 DOI: 10.1002/chem.202102601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Indexed: 12/30/2022]
Abstract
Redox-active Cu(II) complexes are able to form reactive oxygen species (ROS) in the presence of oxygen and reducing agents. Recently, Faller et al. reported that ROS generation by Cu(II) ATCUN complexes is not as high as assumed for decades. High complex stability results in silencing of the Cu(II)/Cu(I) redox cycle and therefore leads to low ROS generation. In this work, we demonstrate that an exchange of the α-amino acid Gly with the β-amino acid β-Ala at position 2 (Gly2→β-Ala2) of the ATCUN motif reinstates ROS production (• OH and H2 O2 ). Potentiometry, cyclic voltammetry, EPR spectroscopy and DFT simulations were utilized to explain the increased ROS generation of these β-Ala2-containing ATCUN complexes. We also observed enhanced oxidative cleavage activity towards plasmid DNA for β-Ala2 compared to the Gly2 complexes. Modifications with positively charged Lys residues increased the DNA affinity through electrostatic interactions as determined by UV/VIS, fluorescence, and CD spectroscopy, and consequently led to a further increase in nuclease activity. A similar trend was observed regarding the cytotoxic activity of the complexes against several human cancer cell lines where β-Ala2 peptide complexes had lower IC50 values compared to Gly2. The higher cytotoxicity could be attributed to an increased cellular uptake as determined by ICP-MS measurements.
Collapse
Affiliation(s)
- Julian Heinrich
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
- Institute of ChemistryOtto-von-Guericke-Universität MagdeburgUniversitätsplatz 239106MagdeburgGermany
| | - Karolina Bossak‐Ahmad
- Institute of Biochemistry and BiophysicsPolish Academy of SciencePawińskiego 5a02-106WarsawPoland
| | - Mie Riisom
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Haleh H. Haeri
- Institute of ChemistryMartin-Luther-Universität Halle-WittenbergVon-Danckelmann-Platz 406120HalleGermany
| | - Tasha R. Steel
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Vinja Hergl
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| | - Alexander Langhans
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| | - Corinna Schattschneider
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| | - Jannis Barrera
- Institute of ChemistryOtto-von-Guericke-Universität MagdeburgUniversitätsplatz 239106MagdeburgGermany
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Stephen M. F. Jamieson
- Auckland Cancer Society Research CentreUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Matthias Stein
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstrasse 139106MagdeburgGermany
| | - Dariush Hinderberger
- Institute of ChemistryMartin-Luther-Universität Halle-WittenbergVon-Danckelmann-Platz 406120HalleGermany
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Wojciech Bal
- Institute of Biochemistry and BiophysicsPolish Academy of SciencePawińskiego 5a02-106WarsawPoland
| | - Nora Kulak
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
- Institute of ChemistryOtto-von-Guericke-Universität MagdeburgUniversitätsplatz 239106MagdeburgGermany
| |
Collapse
|
3
|
Lüdtke C, Sobottka S, Heinrich J, Liebing P, Wedepohl S, Sarkar B, Kulak N. Forty Years after the Discovery of Its Nucleolytic Activity: [Cu(phen) 2 ] 2+ Shows Unattended DNA Cleavage Activity upon Fluorination. Chemistry 2021; 27:3273-3277. [PMID: 33245157 PMCID: PMC7898652 DOI: 10.1002/chem.202004594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Indexed: 11/30/2022]
Abstract
[Cu(phen)2]2+ (phen=1,10‐phenanthroline) is the first and still one of the most efficient artificial nucleases. In general, when the phen ligand is modified, the nucleolytic activity of its CuII complex is significantly reduced. This is most likely due to higher steric bulk of such ligands and thus lower affinity to DNA. CuII complexes with phen ligands having fluorinated substituents (F, CF3, SF5, SCF3) surprisingly showed excellent DNA cleavage activity—in contrast to the unsubstituted [Cu(phen)2]2+—in the absence of the otherwise required classical, bioabundant external reducing agents like thiols or ascorbate. This nucleolytic activity correlates well with the half‐wave potentials E1/2 of the complexes. Cancer cell studies show cytotoxic effects of all complexes with fluorinated ligands in the low μm range, whereas they were less toxic towards healthy cells (fibroblasts).
Collapse
Affiliation(s)
- Carsten Lüdtke
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Julian Heinrich
- Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Phil Liebing
- Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Stefanie Wedepohl
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany.,Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Nora Kulak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany.,Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
4
|
Bormio Nunes J, Hager S, Mathuber M, Pósa V, Roller A, Enyedy ÉA, Stefanelli A, Berger W, Keppler BK, Heffeter P, Kowol CR. Cancer Cell Resistance Against the Clinically Investigated Thiosemicarbazone COTI-2 Is Based on Formation of Intracellular Copper Complex Glutathione Adducts and ABCC1-Mediated Efflux. J Med Chem 2020; 63:13719-13732. [PMID: 33190481 PMCID: PMC7706001 DOI: 10.1021/acs.jmedchem.0c01277] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/12/2022]
Abstract
COTI-2 is a novel anticancer thiosemicarbazone in phase I clinical trial. However, the effects of metal complexation (a main characteristic of thiosemicarbazones) and acquired resistance mechanisms are widely unknown. Therefore, in this study, the copper and iron complexes of COTI-2 were synthesized and evaluated for their anticancer activity and impact on drug resistance in comparison to metal-free thiosemicarbazones. Investigations using Triapine-resistant SW480/Tria and newly established COTI-2-resistant SW480/Coti cells revealed distinct structure-activity relationships. SW480/Coti cells were found to overexpress ABCC1, and COTI-2 being a substrate for this efflux pump. This was unexpected, as ABCC1 has strong selectivity for glutathione adducts. The recognition by ABCC1 could be explained by the reduction kinetics of a ternary Cu-COTI-2 complex with glutathione. Thus, only thiosemicarbazones forming stable, nonreducible copper(II)-glutathione adducts are recognized and, in turn, effluxed by ABCC1. This reveals a crucial connection between copper complex chemistry, glutathione interaction, and the resistance profile of clinically relevant thiosemicarbazones.
Collapse
Affiliation(s)
- Julia
H. Bormio Nunes
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, Vienna 1090, Austria
- Inorganic
Chemistry Department, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Sonja Hager
- Institute
of Cancer Research, Medical University of
Vienna, Borschkegasse
8a, Vienna 1090, Austria
- Research
Cluster “Translational Cancer Therapy Research”, Vienna 1090, Austria
| | - Marlene Mathuber
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, Vienna 1090, Austria
| | - Vivien Pósa
- Department
of Inorganic and Analytical Chemistry, Interdisciplinary Excellence
Centre and MTA-SZTE Lendület Functional Metal Complexes Research
Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Alexander Roller
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, Vienna 1090, Austria
| | - Éva A. Enyedy
- Department
of Inorganic and Analytical Chemistry, Interdisciplinary Excellence
Centre and MTA-SZTE Lendület Functional Metal Complexes Research
Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Alessia Stefanelli
- Institute
of Cancer Research, Medical University of
Vienna, Borschkegasse
8a, Vienna 1090, Austria
| | - Walter Berger
- Institute
of Cancer Research, Medical University of
Vienna, Borschkegasse
8a, Vienna 1090, Austria
- Research
Cluster “Translational Cancer Therapy Research”, Vienna 1090, Austria
| | - Bernhard K. Keppler
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, Vienna 1090, Austria
- Research
Cluster “Translational Cancer Therapy Research”, Vienna 1090, Austria
| | - Petra Heffeter
- Institute
of Cancer Research, Medical University of
Vienna, Borschkegasse
8a, Vienna 1090, Austria
- Research
Cluster “Translational Cancer Therapy Research”, Vienna 1090, Austria
| | - Christian R. Kowol
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, Vienna 1090, Austria
- Research
Cluster “Translational Cancer Therapy Research”, Vienna 1090, Austria
| |
Collapse
|