1
|
Li M, Zhu H, Adorinni S, Xue W, Heard A, Garcia AM, Kralj S, Nitschke JR, Marchesan S. Metal Ions Trigger the Gelation of Cysteine-Containing Peptide-Appended Coordination Cages. Angew Chem Int Ed Engl 2024; 63:e202406909. [PMID: 38701043 DOI: 10.1002/anie.202406909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
We report a series of coordination cages that incorporate peptide chains at their vertices, prepared through subcomponent self-assembly. Three distinct heterochiral tripeptide subcomponents were incorporated, each exhibiting an L-D-L stereoconfiguration. Through this approach, we prepared and characterized three tetrahedral metal-peptide cages that incorporate thiol and methylthio groups. The gelation of these cages was probed through the binding of additional metal ions, with the metal-peptide cages acting as junctions, owing to the presence of sulfur atoms on the peripheral peptides. Gels were obtained with cages bearing cysteine at the C-terminus. Our strategy for developing functional metal-coordinated supramolecular gels with a modular design may result in the development of materials useful for chemical separations or drug delivery.
Collapse
Affiliation(s)
- Meng Li
- Department of Environmental Science and Engineering, North China Electric Power University, 689 Huadian Road, Baoding, 071003, P. R. China
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Huangtianzhi Zhu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Simone Adorinni
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Weichao Xue
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Andrew Heard
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ana M Garcia
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Pharmaceutical Technology Department - Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Jonathan R Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Silvia Marchesan
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- INSTM, Unit of Trieste, 34127, Trieste, Italy
| |
Collapse
|
2
|
Lorenzetto T, Bordignon F, Munarin L, Mancin F, Fabris F, Scarso A. Substrate Selectivity Imparted by Self-Assembled Molecular Containers and Catalysts. Chemistry 2024; 30:e202301811. [PMID: 37466005 DOI: 10.1002/chem.202301811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Recent trends in catalysis are devoted to mimicking some peculiar features of enzymes like site selectivity, through functional group recognition, and substrate selectivity, through recognition of the entire surface of the substrate. The latter is a specific feature of enzymes that is seldomly present in homogeneous catalysis. Supramolecular catalysis, thanks to the self-assembly of simple subunits, enables the creation of cavities and surfaces whose confinement effects drive the preferential binding of a substrate among others with consequent substrate selectivity. The topic is an emerging field that exploits recognition phenomena to discriminate the reagents based on their size and shape. This review deals this cutting-edge field of research covering examples of supramolecular self-assembled molecular containers and catalysts operating in organic as well as aqueous media, with special emphasis for catalytic systems dealing with direct competitive experiments involving two or more substrates.
Collapse
Affiliation(s)
- Tommaso Lorenzetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Francesca Bordignon
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via Marzolo 1, Padova, 35100, Italy
| | - Luca Munarin
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via Marzolo 1, Padova, 35100, Italy
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| |
Collapse
|
3
|
Höppener C, Elter JK, Schacher FH, Deckert V. Inside Block Copolymer Micelles-Tracing Interfacial Influences on Crosslinking Efficiency in Nanoscale Confined Spaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206451. [PMID: 36806886 DOI: 10.1002/smll.202206451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/22/2023] [Indexed: 05/18/2023]
Abstract
Recently, several studies have demonstrated the excellent capabilities of tip-enhanced Raman spectroscopyfor in-depth investigations of structural properties of matter with unprecedented resolution and chemical specificity. These capabilities are utilized here to study the internal structure of core-crosslinked micelles, which are formed by self-assembly of the diblock terpolymer poly(ethylene oxide)-block-poly(furfuryl glycidylether-co-tert-butylglycidyl ether). Supplementing force-volume atomic force microscopy experiments address additionally the nanomechanical properties. Particularly, TERS enables investigating the underlying principles influencing the homogeneity and efficiency of the Diels-Alder core-crosslinking process in the confined hydrophobic core. While the central core region is homogenously crosslinked, a breakdown of the crosslinking reaction is observed in the core-corona interfacial region. The results corroborate that a strong crosslinking efficiency is directly correlated to the formation of a mixed zone of the glycidyl ether and PEO corona blocks reaching ≈5 nm into the core region. Concomitantly a strong exclusion of the encapsulated bismaleimide crosslinker from the interfacial region is observed. It is conceivable that a changed structure, chemical composition and altered nanomechanical properties of this interfacial region may also influence the crosslinking efficiency across the entire core region by a modification of the solubility of the crosslinker in the interfacial core-corona region.
Collapse
Affiliation(s)
- Christiane Höppener
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, D-07745, Jena, Germany
| | - Johanna K Elter
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Lessingstraße 8, D-07743, Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Lessingstraße 8, D-07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, D-07743, Jena, Germany
| | - Volker Deckert
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, D-07745, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, D-07743, Jena, Germany
| |
Collapse
|
4
|
Némethová I, Schmid D, Tiefenbacher K. Supramolecular Capsule Catalysis Enables the Exploration of Terpenoid Chemical Space Untapped by Nature. Angew Chem Int Ed Engl 2023; 62:e202218625. [PMID: 36727480 DOI: 10.1002/anie.202218625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023]
Abstract
Terpenes represent the largest and the most diverse class of natural compounds. This is remarkable as the whole variety is accessed from just a handful of highly conserved linear precursors. Modification of the cyclization precursors would enable a dramatic expansion of the accessible chemical space. However, natural enzymes do not enable us to tap into this potential, as they do not tolerate larger deviations from the prototypical substrate structure. Herein we report that supramolecular capsule catalysis enables facile access to diverse and novel terpenoid skeletons that formally can be traced back to C3-phenyl, benzyl, and homoprenyl derivatives of farnesol. Novel skeletons related to the presilphiperfolane core structure, as well as novel neoclovene derivatives were accessed efficiently in only four synthetic steps. Importantly, the products obtained carry functional groups that may be readily derivatized further.
Collapse
Affiliation(s)
- Ivana Némethová
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Dario Schmid
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|
5
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
6
|
Zheng J, von Krbek LKS, Ronson TK, Nitschke JR. Host Spin-Crossover Thermodynamics Indicate Guest Fit. Angew Chem Int Ed Engl 2022; 61:e202212634. [PMID: 36264645 PMCID: PMC10098494 DOI: 10.1002/anie.202212634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 11/06/2022]
Abstract
Spin-crossover (SCO) metal-organic cages capable of switching between high-spin and low-spin states have the potential to be used as magnetic sensors and switches. Variation of the donor strength of heterocyclic aldehyde subcomponents in imine-based ligands can tune the ligand field for a FeII center, which results in both homoleptic and heteroleptic cages with diverse SCO behaviors. The tetrahedral SCO cage built from 1-methyl-1H-imidazole-2-carbaldehyde is capable of encapsulating various guests, which stabilize different cage spin states depending on guest size. Conversely, the SCO tetrahedron exhibits different affinities for guests in different spin states, which is inferred to result from subtle structural differences of the cavity caused by the change in metal center spin state. Examination of SCO thermodynamics across a series of host-guest complexes enabled sensitive probing of guest fit to the host cavity, providing information complementary to binding-constant determination.
Collapse
Affiliation(s)
- Jieyu Zheng
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Larissa K. S. von Krbek
- Kekulé-Institut für Organische Chemie and BiochemieRheinische Friedrich-Wilhelms-Universität BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Tanya K. Ronson
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | | |
Collapse
|
7
|
Yamamoto K, Morikawa K, Imanaka H, Imamura K, Kitamori T. Kinetics of Enzymatic Reactions at the Solid/Liquid Interface in Nanofluidic Channels. Anal Chem 2022; 94:15686-15694. [DOI: 10.1021/acs.analchem.2c02878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Koki Yamamoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-8656, Japan
| | - Kyojiro Morikawa
- Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan, ROC
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-8656, Japan
| | - Hiroyuki Imanaka
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama700-8530, Japan
| | - Koreyoshi Imamura
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama700-8530, Japan
| | - Takehiko Kitamori
- Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan, ROC
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-8656, Japan
| |
Collapse
|
8
|
Ma F, Qiao X, Zuo W, Tao Y, Li A, Luo Z, Liu Y, Liu X, Wang X, Sun W, Jia C. Less is More: A Shortcut for Anionocages Design Based on (RPO
3
2−
)‐Monourea Coordination. Angew Chem Int Ed Engl 2022; 61:e202210478. [DOI: 10.1002/anie.202210478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Fen Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xinrui Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wei Zuo
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries School of Environmental and Chemical Engineering Xi'an Polytechnic University Xi'an 710600 China
| | - Yu Tao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Zhipeng Luo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Yuqi Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xueru Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xiaoqing Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Chuandong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| |
Collapse
|
9
|
Yan D, Cai L, Hu S, Zhou Y, Zhou L, Sun Q. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induced‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022; 61:e202209879. [DOI: 10.1002/anie.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dan‐Ni Yan
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Shao‐Jun Hu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Fang Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Li‐Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
10
|
Yan DN, Cai LX, Hu SJ, Zhou YF, Zhou LP, Sun QF. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induce‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dan-Ni Yan
- University of the Chinese Academy of Sciences Fujian College CHINA
| | - Li-Xuan Cai
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Shao-Jun Hu
- University of the Chinese Academy of Sciences Fujian College 350002 Fuzhou CHINA
| | - Yan-Fang Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Li-Peng Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Qing-Fu Sun
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
11
|
Ma F, Qiao X, Zuo W, Tao Y, Li A, Luo Z, Liu Y, Liu X, Wang X, Sun W, Jia C. Less is More: A Shortcut for Anionocages Design Based on (RPO32‐)‐Monourea Coordination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fen Ma
- Northwest University College of Chemistry and Materials Science CHINA
| | - Xinrui Qiao
- Northwest University College of Chemistry and Materials Science CHINA
| | - Wei Zuo
- Xi'an Polytechnic University College of Emvironmental and Chemical Engineering CHINA
| | - Yu Tao
- Northwest University College of Chemistry and Materials Science CHINA
| | - Anyang Li
- Northwest University College of Chemistry and Materials Science CHINA
| | - Zhipeng Luo
- Northwest University College of Chemistry and Materials Science CHINA
| | - Yuqi Liu
- Northwest University College of Chemistry and Materials Science CHINA
| | - Xueru Liu
- Northwest University College of Chemistry and Materials Science CHINA
| | - Xiaoqing Wang
- Northwest University College of Chemistry and Materials Science CHINA
| | - Wei Sun
- Northwest University College of Chemistry and Materials Science CHINA
| | - Chuandong Jia
- Northwest University College of Chemistry and Materials Science No.1, Xuefu Ave. Chang'an District 710127 Xi'an CHINA
| |
Collapse
|
12
|
Sokolova D, Piccini G, Tiefenbacher K. Enantioselective Tail-to-Head Terpene Cyclizations by Optically Active Hexameric Resorcin[4]arene Capsule Derivatives. Angew Chem Int Ed Engl 2022; 61:e202203384. [PMID: 35324038 PMCID: PMC9323437 DOI: 10.1002/anie.202203384] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 01/01/2023]
Abstract
Molecular capsules enable the conversion of substrates inside a closed cavity, mimicking to some extent enzymatic catalysis. Chirality transfer from the molecular capsule onto the encapsulated substrate has been only studied in a few cases. Here we demonstrate that chirality transfer is possible inside a rather large molecular container of approximately 1400 Å3 . Specifically, we present 1) the first examples of optically active hexameric resorcin[4]arene capsules, 2) their ability to enantioselectively catalyze tail-to-head terpene cyclizations, and 3) the surprisingly high sensitivity of enantioselectivity on the structural modifications.
Collapse
Affiliation(s)
- Daria Sokolova
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - GiovanniMaria Piccini
- Facoltà di Informatica, Istituto EuleroUniversità della Svizzera Italiana (USI)LuganoSwitzerland
| | - Konrad Tiefenbacher
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 264058BaselSwitzerland
| |
Collapse
|
13
|
Ma C, Tang J, Yu L, Wen K, Gan Q. Optimization of an Asymmetric Reaction in the Cavity of Chiral Aromatic Oligoamide Foldamers. Chemistry 2022; 28:e202200834. [DOI: 10.1002/chem.202200834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Chunmiao Ma
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Jie Tang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Lu Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Kehan Wen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Quan Gan
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
14
|
Vatsadze SZ, Maximov AL, Bukhtiyarov VI. Supramolecular Effects and Systems in Catalysis. A Review. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Sokolova D, Piccini G, Tiefenbacher K. Enantioselective Tail‐to‐Head Terpene Cyclizations by Optically Active Hexameric Resorcin[4]arene Capsule Derivatives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daria Sokolova
- University of Basel: Universitat Basel Chemistry SWITZERLAND
| | - GiovanniMaria Piccini
- Università della Svizzera Italiana: Universita della Svizzera Italiana Informatica SWITZERLAND
| | | |
Collapse
|
16
|
Nakabayashi K, Kishimoto K, Kobayashi K. Doubly Cavitand‐Capped Zn‐Porphyrin Capsule with Simultaneous Encapsulation of Guest and Ligand, and Its Application to Doubly Cavitand‐Capped Double‐Decker Zn‐Porphyrin Capsule. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kakeru Nakabayashi
- Department of Optoelectronics and Nanostructure Science Graduate School of Science and Technology Shizuoka University 836 Ohya 422-8529 Suruga-ku Shizuoka Japan
| | - Kazuki Kishimoto
- Department of Chemistry Faculty of Science Shizuoka University 836 Ohya 422-8529 Suruga-ku Shizuoka Japan
| | - Kenji Kobayashi
- Department of Optoelectronics and Nanostructure Science Graduate School of Science and Technology Shizuoka University 836 Ohya 422-8529 Suruga-ku Shizuoka Japan
- Department of Chemistry Faculty of Science Shizuoka University 836 Ohya 422-8529 Suruga-ku Shizuoka Japan
- Research Institute of Green Science and Technology Shizuoka University 836 Ohya 422-8529 Suruga-ku Shizuoka Japan
| |
Collapse
|
17
|
Meijide Suárez J, Bistri‐Aslanoff O, Roland S, Sollogoub M. Cavity‐Controlled Coordination of Square Planar Metal Complexes and Substrate Selectivity by NHC‐Capped Cyclodextrins (ICyDs). ChemCatChem 2021. [DOI: 10.1002/cctc.202101411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jorge Meijide Suárez
- Sorbonne Université CNRSInstitut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Olivia Bistri‐Aslanoff
- Sorbonne Université CNRSInstitut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Sylvain Roland
- Sorbonne Université CNRSInstitut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Matthieu Sollogoub
- Sorbonne Université CNRSInstitut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| |
Collapse
|
18
|
Luo N, Ao YF, Wang DX, Wang QQ. Exploiting Anion-π Interactions for Efficient and Selective Catalysis with Chiral Molecular Cages. Angew Chem Int Ed Engl 2021; 60:20650-20655. [PMID: 34050685 DOI: 10.1002/anie.202106509] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Exploiting anion-π interactions in catalyst design is a fascinating direction to develop new and fundamental catalysis. For the appealing yet flexible π-face activation, can two or more π-acidic surfaces be manipulated for cooperative activation to achieve efficient transformation and particularly selectivity control is highly desirable. Here, we demonstrate a supramolecular π-catalysis strategy by establishing cooperative π-face activation in a confined electron-deficient cage cavity. The catalysts have a triazine based prism-like cage core and pendant chiral base sites. Only 2 mol % of cage catalyst efficiently catalyzed the decarboxylate Mannich reactions of sulfamate-headed cyclic aldimines and a series of malonic acid half thioesters in nearly quantitative yields and up to 97 % ee, enabling an unprecedent organocatalytic approach. The supramolecular π-cavity is essential in harnessing cooperative anion-π interactions for the efficient activation and excellent selectivity control.
Collapse
Affiliation(s)
- Na Luo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Luo N, Ao Y, Wang D, Wang Q. Exploiting Anion–π Interactions for Efficient and Selective Catalysis with Chiral Molecular Cages. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Na Luo
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu‐Fei Ao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - De‐Xian Wang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qi‐Qiang Wang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
20
|
Mouarrawis V, Bobylev EO, Bruin B, Reek JNH. Controlling the Activity of a Caged Cobalt‐Porphyrin‐Catalyst in Cyclopropanation Reactions with Peripheral Cage Substituents. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Valentinos Mouarrawis
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Eduard O. Bobylev
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Bas Bruin
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N. H. Reek
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
21
|
Zhu J, Zhang D, Ronson TK, Wang W, Xu L, Yang H, Nitschke JR. A Cavity-Tailored Metal-Organic Cage Entraps Gases Selectively in Solution and the Amorphous Solid State. Angew Chem Int Ed Engl 2021; 60:11789-11792. [PMID: 33768657 PMCID: PMC8251750 DOI: 10.1002/anie.202102095] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 01/24/2023]
Abstract
Here we report the subcomponent self-assembly of a truxene-faced Zn4 L4 tetrahedron, which is capable of binding the smallest hydrocarbons in solution. By deliberately incorporating inward-facing ethyl groups on the truxene faces, the resulting partially-filled cage cavity was tailored to encapsulate methane, ethane, and ethene via van der Waals interactions at atmospheric pressure in acetonitrile, and also in the amorphous solid state. Interestingly, gas capture showed divergent selectivities in solution and the amorphous solid state. The selective binding may prove useful in designing new processes for the purification of methane and ethane as feedstocks for chemical synthesis.
Collapse
Affiliation(s)
- Jun‐Long Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University3663 N. Zhongshan RoadShanghai200062P. R. China
| | - Dawei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University3663 N. Zhongshan RoadShanghai200062P. R. China
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Tanya K. Ronson
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Wenjing Wang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University3663 N. Zhongshan RoadShanghai200062P. R. China
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University3663 N. Zhongshan RoadShanghai200062P. R. China
| | | |
Collapse
|
22
|
Zhu J, Zhang D, Ronson TK, Wang W, Xu L, Yang H, Nitschke JR. A Cavity‐Tailored Metal‐Organic Cage Entraps Gases Selectively in Solution and the Amorphous Solid State. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jun‐Long Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Dawei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Tanya K. Ronson
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Jonathan R. Nitschke
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
23
|
Wang K, Jordan JH, Velmurugan K, Tian X, Zuo M, Hu XY, Wang L. Role of Functionalized Pillararene Architectures in Supramolecular Catalysis. Angew Chem Int Ed Engl 2020; 60:9205-9214. [PMID: 32794352 DOI: 10.1002/anie.202010150] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 12/14/2022]
Abstract
The many useful features possessed by pillararenes (PAs; e.g. rigid, capacious, and hydrophobic cavities, as well as exposed functional groups) have led to a tremendous increase in their popularity since their first discovery in 2008. In this Minireview, we emphasize the use of functionalized PAs and their assembled supramolecular materials in the field of catalysis. We aim to provide a fundamental understanding and mechanism of the role PAs play in catalytic process. The topics are subdivided into catalysis promoted by the PA rim/cavity, PA-based nanomaterials, and PA-based polymeric materials. To the best of our knowledge, this is the first overview on PA-based catalysis. This Minireview not only summarizes the fabrications and applications of PAs in catalysis but also anticipates future research efforts in applying supramolecular hosts in catalysis.
Collapse
Affiliation(s)
- Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jacobs H Jordan
- The Southern Regional Research Center, Agricultural Research Service, USDA, New Orleans, LA, 70124, USA
| | - Krishnasamy Velmurugan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xueqi Tian
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
24
|
Wang K, Jordan JH, Velmurugan K, Tian X, Zuo M, Hu X, Wang L. Role of Functionalized Pillararene Architectures in Supramolecular Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kaiya Wang
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Jacobs H. Jordan
- The Southern Regional Research Center Agricultural Research Service, USDA New Orleans LA 70124 USA
| | - Krishnasamy Velmurugan
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Xueqi Tian
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Minzan Zuo
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Xiao‐Yu Hu
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|