1
|
Wan C, Yang D, An Y, Kong L, Zhou Z, Tang L, Zhang Z, Dai Y, Wang R. Tunable Activated Esters Enable Lysine-Selective Protein Labeling and Profiling. Anal Chem 2024; 96:18377-18383. [PMID: 39509607 DOI: 10.1021/acs.analchem.4c02215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Lysine residues on protein surfaces are abundant and often found in enzyme active sites, making them critical targets for studying undruggable proteins. However, the varied microenvironment surrounding lysine residues results in a wide range of pKa values, complicating site-specific covalent binding. In this study, we address the challenges posed by the diverse reactivity of amino side chains by modulating the amide reaction activity of heteroaromatic activated esters. By fine-tuning the type, position, and number of heteroatoms, we successfully rationalized the regulation of their amide reaction activity, leading to the design of probes for selective lysine labeling within the proteome for profiling purposes. Systematic optimization of these esters' reactivity and selectivity has yielded a series of effective probes suitable for both in vitro and cellular applications. These findings significantly enhance our understanding of protein functions and mechanisms, facilitated by the precise identification and analysis of protein labeling and profiling.
Collapse
Affiliation(s)
- Chuan Wan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 518118 Shenzhen, China
| | - Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, 510230 Guangzhou, China
| | - Yuhao An
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Lingwei Kong
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Ziyuan Zhou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, P. R. China
| | - Li Tang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 518118 Shenzhen, China
| | - Zhe Zhang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 518118 Shenzhen, China
| | - Yaohong Dai
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 518118 Shenzhen, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
2
|
Denijs E, Unal K, Bevernaege K, Kasmi S, De Geest BG, Winne JM. Thermally Triggered Triazolinedione-Tyrosine Bioconjugation with Improved Chemo- and Site-Selectivity. J Am Chem Soc 2024; 146:12672-12680. [PMID: 38683141 DOI: 10.1021/jacs.4c02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A bioconjugation strategy is reported that allows the derivatization of tyrosine side chains through triazolinedione-based "Y-clicking". Blocked triazolinedione reagents were developed that, in contrast to classical triazolinedione reagents, can be purified before use, can be stored for a long time, and allow functionalization with a wider range of cargoes and labels. These reagents are bench-stable at room temperature but steadily release highly reactive triazolinediones upon heating to 40 °C in buffered media at physiological pH, showing a sharp temperature response over the 0 to 40 °C range. This conceptually interesting strategy, which is complementary to existing photo- or electrochemical bioorthogonal bond-forming methods, not only avoids the classical synthesis and handling difficulties of these highly reactive click-like reagents but also markedly improves the selectivity profile of the tyrosine conjugation reaction itself. It avoids oxidative damage and "off-target" tryptophan labeling, and it even improves site-selectivity in discriminating between different tyrosine side chains on the same protein or different polypeptide chains. In this research article, we describe the stepwise development of these reagents, from their short and modular synthesis to small-molecule model bioconjugation studies and proof-of-principle bioorthogonal chemistry on peptides and proteins.
Collapse
Affiliation(s)
- Elias Denijs
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Kamil Unal
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Kevin Bevernaege
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Sabah Kasmi
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Wan C, Yang D, Song C, Liang M, An Y, Lian C, Dai C, Ye Y, Yin F, Wang R, Li Z. A pyridinium-based strategy for lysine-selective protein modification and chemoproteomic profiling in live cells. Chem Sci 2024; 15:5340-5348. [PMID: 38577373 PMCID: PMC10988577 DOI: 10.1039/d3sc05766f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Protein active states are dynamically regulated by various modifications; thus, endogenous protein modification is an important tool for understanding protein functions and networks in complicated biological systems. Here we developed a new pyridinium-based approach to label lysine residues under physiological conditions that is low-toxicity, efficient, and lysine-selective. Furthermore, we performed a large-scale analysis of the ∼70% lysine-selective proteome in MCF-7 cells using activity-based protein profiling (ABPP). We quantifically assessed 1216 lysine-labeled peptides in cell lysates and identified 386 modified lysine sites including 43 mitochondrial-localized proteins in live MCF-7 cells. Labeled proteins significantly preferred the mitochondria. This pyridinium-based methodology demonstrates the importance of analyzing endogenous proteins under native conditions and provides a robust chemical strategy utilizing either lysine-selective protein labeling or spatiotemporal profiling in a living system.
Collapse
Affiliation(s)
- Chuan Wan
- College of Health Science and Environmental Engineering, Shenzhen Technology University Shenzhen 518118 P. R. China
| | - Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering Guangzhou 510225 P. R. China
| | - Chunli Song
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Mingchan Liang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Yuhao An
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Chenshan Lian
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Chuan Dai
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Yuxin Ye
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| |
Collapse
|
4
|
Mason M, Belvisi L, Pignataro L, Dal Corso A. A Tight Contact: The Expanding Application of Salicylaldehydes in Lysine-Targeting Covalent Drugs. Chembiochem 2024; 25:e202300743. [PMID: 37986243 DOI: 10.1002/cbic.202300743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
The installation of aldehydes into synthetic protein ligands is an efficient strategy to engage protein lysine residues in remarkably stable imine bonds and augment the compound affinity and selectivity for their biological targets. The high frequency of lysine residues in proteins and the reversibility of the covalent ligand-protein bond support the application of aldehyde-bearing ligands, holding promises for their future use as drugs. This review highlights the increasing exploitation of salicylaldehyde modules in various classes of protein binders, aimed at the reversible-covalent engagement of lysine residues.
Collapse
Affiliation(s)
- Mattia Mason
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, 20133, Milan, Italy
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, 20133, Milan, Italy
| | - Luca Pignataro
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, 20133, Milan, Italy
| | - Alberto Dal Corso
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, 20133, Milan, Italy
| |
Collapse
|
5
|
Tantipanjaporn A, Wong MK. Development and Recent Advances in Lysine and N-Terminal Bioconjugation for Peptides and Proteins. Molecules 2023; 28:molecules28031083. [PMID: 36770752 PMCID: PMC9953373 DOI: 10.3390/molecules28031083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The demand for creation of protein diversity and regulation of protein function through native protein modification and post-translational modification has ignited the development of selective chemical modification methods for peptides and proteins. Chemical bioconjugation offers selective functionalization providing bioconjugates with desired properties and functions for diverse applications in chemical biology, medicine, and biomaterials. The amino group existing at the lysine residue and N-terminus of peptides and proteins has been extensively studied in bioconjugation because of its good nucleophilicity and high surface exposure. Herein, we review the development of chemical methods for modification of the amino groups on lysine residue and N-terminus featuring excellent selectivity, mild reaction conditions, short reaction time, high conversion, biocompatibility, and preservation of protein integrity. This review is organized based on the chemoselectivity and site-selectivity of the chemical bioconjugation reagents to the amino acid residues aiming to provide guidance for the selection of appropriate bioconjugation methods.
Collapse
|
6
|
Sacco G, Arosio D, Paolillo M, Gloger A, Scheuermann J, Pignataro L, Belvisi L, Dal Corso A, Gennari C. RGD Cyclopeptide Equipped with a Lysine-Engaging Salicylaldehyde Showing Enhanced Integrin Affinity and Cell Detachment Potency. Chemistry 2023; 29:e202203768. [PMID: 36594507 DOI: 10.1002/chem.202203768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Salicylaldehyde (SA) derivatives are emerging as useful fragments to obtain reversible-covalent inhibitors interacting with the lysine residues of the target protein. Here the SA installation at the C terminus of an integrin-binding cyclopeptide, leading to enhanced ligand affinity for the receptor as well as stronger biological activity in cultured glioblastoma cells is reported.
Collapse
Affiliation(s)
- Giovanni Sacco
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, I-20133, Milan, Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Chimiche (SCITEC) "Giulio Natta", Consiglio Nazionale delle Ricerche, Via Golgi 19, I-20133, Milan, Italy
| | - Mayra Paolillo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Viale Taramelli 6, 27100, Pavia, Italy
| | - Andreas Gloger
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Luca Pignataro
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, I-20133, Milan, Italy
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, I-20133, Milan, Italy
| | - Alberto Dal Corso
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, I-20133, Milan, Italy
| | - Cesare Gennari
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, I-20133, Milan, Italy
| |
Collapse
|
7
|
MacPherson DS, Hwang D, Sarrett SM, Keinänen O, Rodriguez C, Rader C, Zeglis BM. Leveraging a Dual Variable Domain Immunoglobulin to Create a Site-Specifically Modified Radioimmunoconjugate. Mol Pharm 2023; 20:775-782. [PMID: 36377696 PMCID: PMC10263003 DOI: 10.1021/acs.molpharmaceut.2c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Site-specifically modified radioimmunoconjugates exhibit superior in vitro and in vivo behavior compared to analogues synthesized via traditional stochastic methods. However, the development of approaches to site-specific bioconjugation that combine high levels of selectivity, simple reaction conditions, and clinical translatability remains a challenge. Herein, we describe a novel solution to this problem: the use of dual-variable domain immunoglobulins (DVD-IgG). More specifically, we report the synthesis, in vitro evaluation, and in vivo validation of a 177Lu-labeled radioimmunoconjugate based on HER2DVD, a DVD-IgG containing the HER2-targeting variable domains of trastuzumab and the catalytic variable domains of IgG h38C2. To this end, we first modified HER2DVD with a phenyloxadiazolyl methlysulfone-modified variant of the chelator CHX-A″-DTPA (PODS-CHX-A''-DTPA) and verified the site-specificity of the conjugation for the reactive lysines within the catalytic domains via chemical assay, MALDI-ToF mass spectrometry, and SDS-PAGE. The chelator-bearing immunoconjugate was subsequently labeled with [177Lu]Lu3+ to produce the completed radioimmunoconjugate, [177Lu]Lu-CHX-A″-DTPAPODS-HER2DVD, in >80% radiochemical conversion and a specific activity of 29.5 ± 7.1 GBq/μmol. [177Lu]Lu-CHX-A″-DTPAPODS-HER2DVD did not form aggregates upon prolonged incubation in human serum, displayed 87% stability to demetalation over a 7 days of incubation in serum, and exhibited an immunoreactive fraction of 0.95 with HER2-coated beads. Finally, we compared the pharmacokinetic profile of [177Lu]Lu-CHX-A″-DTPAPODS-HER2DVD to that of a 177Lu-labeled variant of trastuzumab in mice bearing subcutaneous HER2-expressing BT-474 human breast cancer xenografts. The in vivo performance of [177Lu]Lu-CHX-A″-DTPAPODS-HER2DVD matched that of 177Lu-labeled trastuzumab, with the former producing a tumoral activity concentration of 34.1 ± 12.1 %ID/g at 168 h and tumor-to-blood, tumor-to-liver, and tumor-to-kidney activity concentration ratios of 10.5, 9.6, and 21.8, respectively, at the same time point. Importantly, the DVD-IgG did not exhibit a substantially longer serum half-life than the traditional IgG despite its significantly larger size (202 kDa for the former vs 148 kDa for the latter). Taken together, these data suggest that DVD-IgGs represent a viable platform for the future development of highly effective site-specifically labeled radioimmunoconjugates for diagnostic imaging, theranostic imaging, and radioimmunotherapy.
Collapse
Affiliation(s)
- Douglas S. MacPherson
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Advanced Science Research Center (ASRC) at The Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Dobeen Hwang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
| | - Samantha M. Sarrett
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Outi Keinänen
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Cindy Rodriguez
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Christoph Rader
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
| | - Brian M. Zeglis
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Department of Radiology, Weill Cornell Medical College, 520 East 70th Street, New York, New York 10065, United States
| |
Collapse
|
8
|
Kjærsgaard NL, Nielsen TB, Gothelf KV. Chemical Conjugation to Less Targeted Proteinogenic Amino Acids. Chembiochem 2022; 23:e202200245. [PMID: 35781760 PMCID: PMC9796363 DOI: 10.1002/cbic.202200245] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Indexed: 01/01/2023]
Abstract
Protein bioconjugates are in high demand for applications in biomedicine, diagnostics, chemical biology and bionanotechnology. Proteins are large and sensitive molecules containing multiple different functional groups and in particular nucleophilic groups. In bioconjugation reactions it can therefore be challenging to obtain a homogeneous product in high yield. Numerous strategies for protein conjugation have been developed, of which a vast majority target lysine, cysteine and to a lesser extend tyrosine. Likewise, several methods that involve recombinantly engineered protein tags have been reported. In recent years a number of methods have emerged for chemical bioconjugation to other amino acids and in this review, we present the progress in this area.
Collapse
Affiliation(s)
- Nanna L. Kjærsgaard
- Center for Multifunctional Biomolecular Drug Design Interdisciplinary Nanoscience CenterAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| | | | - Kurt V. Gothelf
- Center for Multifunctional Biomolecular Drug Design Interdisciplinary Nanoscience CenterAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| |
Collapse
|
9
|
Zeng Y, Shi W, Dong Q, Li W, Zhang J, Ren X, Tang C, Liu B, Song Y, Wu Y, Diao X, Zhou H, Huang H, Tang F, Huang W. A Traceless Site‐Specific Conjugation on Native Antibodies Enables Efficient One‐Step Payload Assembly. Angew Chem Int Ed Engl 2022; 61:e202204132. [DOI: 10.1002/anie.202204132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yue Zeng
- School of Pharmaceutical Science and Technology Hangzhou Institute of Advanced Study Hangzhou 310024 China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Wei Shi
- School of Pharmaceutical Science and Technology Hangzhou Institute of Advanced Study Hangzhou 310024 China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Qian Dong
- School of Pharmaceutical Science and Technology Hangzhou Institute of Advanced Study Hangzhou 310024 China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Wanzhen Li
- School of Chinese Materia Medica Nanjing University of Chinese Medicine No. 138 Xianlin Road Nanjing 210023 China
| | - Jianxin Zhang
- School of Chinese Materia Medica Nanjing University of Chinese Medicine No. 138 Xianlin Road Nanjing 210023 China
| | - Xuelian Ren
- Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Caihong Tang
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Bo Liu
- School of Pharmaceutical Science and Technology Hangzhou Institute of Advanced Study Hangzhou 310024 China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Yuanli Song
- Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Yali Wu
- Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Xingxing Diao
- Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Hu Zhou
- Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - He Huang
- Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Feng Tang
- School of Pharmaceutical Science and Technology Hangzhou Institute of Advanced Study Hangzhou 310024 China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Wei Huang
- School of Pharmaceutical Science and Technology Hangzhou Institute of Advanced Study Hangzhou 310024 China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- School of Chinese Materia Medica Nanjing University of Chinese Medicine No. 138 Xianlin Road Nanjing 210023 China
| |
Collapse
|
10
|
Zeng Y, Shi W, Dong Q, Li W, Zhang J, Ren X, Tang C, Liu B, Song Y, Wu Y, Diao X, Zhou H, Huang H, Tang F, Huang W. A Traceless Site‐Specific Conjugation on Native Antibodies Enables Efficient One‐Step Payload Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yue Zeng
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Wei Shi
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Qian Dong
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Wanzhen Li
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Jianxin Zhang
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Xuelian Ren
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Caihong Tang
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Bo Liu
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Yuanli Song
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Yali Wu
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center 555 Zuchongzhi Rd CHINA
| | - Xingxing Diao
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center 555 Zuchongzhi Rd CHINA
| | - Hu Zhou
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - He Huang
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Feng Tang
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Wei Huang
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Medicinal Chemistry Zuchongzhi Road 555 201203 Shanghai CHINA
| |
Collapse
|
11
|
Tivon Y, Falcone G, Deiters A. Protein Labeling and Crosslinking by Covalent Aptamers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yaniv Tivon
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Gianna Falcone
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
12
|
Tivon Y, Falcone G, Deiters A. Protein Labeling and Crosslinking by Covalent Aptamers. Angew Chem Int Ed Engl 2021; 60:15899-15904. [PMID: 33928724 PMCID: PMC8260448 DOI: 10.1002/anie.202101174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/09/2021] [Indexed: 12/11/2022]
Abstract
We developed a new approach to selectively modify native proteins in their biological environment using electrophilic covalent aptamers. These aptamers are generated through introduction of a proximity-driven electrophile at specific nucleotide sites. Using thrombin as a proof-of-concept, we demonstrate that covalent aptamers can selectively transfer a variety of functional handles and/or irreversibly crosslink to the target protein. This approach offers broad programmability and high target specificity. Furthermore, it addresses issues common to aptamers such as instability towards endogenous nucleases and residence times during target engagement. Covalent aptamers are new tools that enable specific protein modification and sensitive protein detection. Moreover, they provide prolonged, nuclease-resistant enzyme inhibition.
Collapse
Affiliation(s)
- Yaniv Tivon
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Gianna Falcone
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
13
|
Adakkattil R, Thakur K, Rai V. Reactivity and Selectivity Principles in Native Protein Bioconjugation. CHEM REC 2021; 21:1941-1956. [PMID: 34184826 DOI: 10.1002/tcr.202100108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/10/2021] [Indexed: 12/24/2022]
Abstract
Are chemical methods capable of precisely engineering the native proteins? Is it possible to develop platforms that can empower the regulation of chemoselectivity, site-selectivity, modularity, protein-specificity, and site-specificity? This account delineates our research journey in the last ten years on the developments revolving around these questions. It will range from the realization of chemoselective and site-selective labeling of reactivity hotspots to modular linchpin directed modification (LDM®) platform and site-specific Gly-tag® technology. Also, we outline a few biotechnology tools, including Maspecter®, that accelerated the detailed analysis of the bioconjugates and rendered a powerful toolbox for homogeneous antibody-drug conjugates (ADCs).
Collapse
Affiliation(s)
- Ramesh Adakkattil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462 066, Bhopal, Madhya Pradesh, India
| | - Kalyani Thakur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462 066, Bhopal, Madhya Pradesh, India
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462 066, Bhopal, Madhya Pradesh, India
| |
Collapse
|
14
|
Sacco G, Stammwitz S, Belvisi L, Pignataro L, Dal Corso A, Gennari C. Functionalized 2‐Hydroxybenzaldehyde‐PEG Modules as Portable Tags for the Engagement of Protein Lysine ϵ‐Amino Groups. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Giovanni Sacco
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi, 19 20133 Milan Italy
| | - Simon Stammwitz
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi, 19 20133 Milan Italy
| | - Laura Belvisi
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi, 19 20133 Milan Italy
| | - Luca Pignataro
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi, 19 20133 Milan Italy
| | - Alberto Dal Corso
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi, 19 20133 Milan Italy
| | - Cesare Gennari
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
15
|
Märcher A, Palmfeldt J, Nisavic M, Gothelf KV. A Reagent for Amine‐Directed Conjugation to IgG1 Antibodies. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Anders Märcher
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine Aarhus University Brendstrupgårdsvej 21A 8200 Aarhus N Denmark
| | - Marija Nisavic
- Department of Chemistry and Department of Clinical Medicine Aarhus University Brendstrupgårdsvej 21A 8200 Aarhus N Denmark
| | - Kurt V. Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| |
Collapse
|
16
|
Märcher A, Palmfeldt J, Nisavic M, Gothelf KV. A Reagent for Amine‐Directed Conjugation to IgG1 Antibodies. Angew Chem Int Ed Engl 2021; 60:6539-6544. [DOI: 10.1002/anie.202013911] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/28/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Anders Märcher
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine Aarhus University Brendstrupgårdsvej 21A 8200 Aarhus N Denmark
| | - Marija Nisavic
- Department of Chemistry and Department of Clinical Medicine Aarhus University Brendstrupgårdsvej 21A 8200 Aarhus N Denmark
| | - Kurt V. Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| |
Collapse
|
17
|
Sornay C, Hessmann S, Erb S, Dovgan I, Ehkirch A, Botzanowski T, Cianférani S, Wagner A, Chaubet G. Investigating Ugi/Passerini Multicomponent Reactions for the Site‐Selective Conjugation of Native Trastuzumab**. Chemistry 2020; 26:13797-13805. [DOI: 10.1002/chem.202002432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Charlotte Sornay
- Bio-Functional Chemistry (UMR 7199) LabEx Medalis University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) LabEx Medalis Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) LabEx Medalis Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Igor Dovgan
- Bio-Functional Chemistry (UMR 7199) LabEx Medalis University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| | - Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) LabEx Medalis Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) LabEx Medalis Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO) LabEx Medalis Université de Strasbourg CNRS, IPHC UMR 7178 67000 Strasbourg France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199) LabEx Medalis University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199) LabEx Medalis University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| |
Collapse
|