1
|
Liu DX, Zhu HL, Zhang WX, Chen XM. Nonlinear Optical Glass-Ceramic From a New Polar Phase-Transition Organic-Inorganic Hybrid Crystal. Angew Chem Int Ed Engl 2023; 62:e202218902. [PMID: 36645367 DOI: 10.1002/anie.202218902] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/17/2023]
Abstract
Melt-quenched glasses of organic-inorganic hybrid crystals, i.e., hybrid glasses, have attracted increasing attention as an emerging class of hybrid materials with beneficial processability and formability in the past years. Herein, we present a new hybrid crystal, (Ph3 PEt)3 [Ni(NCS)5 ] (1, Ph3 PEt+ =ethyl(triphenyl)phosphonium), crystallizing in a polar space group P1 and exhibiting thermal-induced reversible crystal-liquid-glass-crystal transitions with relatively low melting temperature of 132 °C, glass-transition temperature of 40 °C, and recrystallization on-set temperature of 78 °C, respectively. Taking advantage of such mild conditions, we fabricated an unprecedented hybrid glass-ceramic thin film, i.e., a thin glass uniformly embedding inner polar micro-crystals, which exhibits a much enhanced intrinsic second-order nonlinear optical effect, being ca. 25.6 and 3.1 times those of poly-crystalline 1 and KH2 PO4 , respectively, without any poling treatments.
Collapse
Affiliation(s)
- De-Xuan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Wei-Xiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
2
|
Haldar R, Kumar A, Mallick B, Ganguly S, Mandal D, Shanmugam M. Discrete Molecular Copper(II) Complex for Efficient Piezoelectric Energy Harvesting Above Room-Temperature. Angew Chem Int Ed Engl 2023; 62:e202216680. [PMID: 36585835 DOI: 10.1002/anie.202216680] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Developing robust, wearable, and biocompatible energy harvesting devices with bulk oxides (ceramics and perovskites) is extremely hard to achieve due to their zero mechanical flexibility, heavy metal toxicity, and tunability of properties. Alternatively, discrete inorganic complexes can be an excellent choice to overcome the above-stated issues, thanks to appropriate molecular engineering. Herein, we report an above-room-temperature ferroelectric discrete molecular complex [Cu(L-phe)(bpy)(H2 O)]PF6 ⋅H2 O (1) which is suitable for piezoelectric energy harvesting due to its large values of piezoelectric co-efficient (d33 =10 pm V-1 ) and spontaneous polarization (Ps =1.3 μC cm-2 ). Among the devices prepared with the composite films of polyvinyl alcohol (PVA) and various weight % composition of 1, the 10 Wt % composite shows the highest output voltage of 8 V, a power density of 0.85 μW cm-2 , and output current of 5 μA, which is highest for any discrete inorganic complex reported to date.
Collapse
Affiliation(s)
- Rajashi Haldar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - Ajay Kumar
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, 140306, India
| | - Binit Mallick
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - Swaroop Ganguly
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - Dipankar Mandal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, 140306, India
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| |
Collapse
|
3
|
Bajpayee N, Vijayakanth T, Rencus-Lazar S, Dasgupta S, Desai AV, Jain R, Gazit E, Misra R. Exploring Helical Peptides and Foldamers for the Design of Metal Helix Frameworks: Current Trends and Future Perspectives. Angew Chem Int Ed Engl 2023; 62:e202214583. [PMID: 36434750 DOI: 10.1002/anie.202214583] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Flexible and biocompatible metal peptide frameworks (MPFs) derived from short and ultra-short peptides have been explored for the storage of greenhouse gases, molecular recognition, and chiral transformations. In addition to short flexible peptides, peptides with specifically folded conformations have recently been utilized to fabricate a variety of metal helix frameworks (MHFs). The secondary structures of the peptides govern the structure-assembly relationship and thereby control the formation of three-dimensional (3D)-MHFs. Particularly, the hierarchical structural organization of peptide-based MHFs has not yet been discussed in detail. Here, we describe the recent progress of metal-driven folded peptide assembly to construct 3D porous structures for use in future energy storage, chiral recognition, and biomedical applications, which could be envisioned as an alternative to the conventional metal-organic frameworks (MOFs).
Collapse
Affiliation(s)
- Nikhil Bajpayee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Mohali, S.A.S. Nagar, Mohali, 160062, India.,Department of Materials Science and Engineering, Tel-Aviv University, 6997801, Tel-Aviv, Israel
| | - Thangavel Vijayakanth
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, 6997801, Tel-Aviv, Israel
| | - Sigal Rencus-Lazar
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, 6997801, Tel-Aviv, Israel
| | - Sneha Dasgupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Mohali, S.A.S. Nagar, Mohali, 160062, India.,Department of Materials Science and Engineering, Tel-Aviv University, 6997801, Tel-Aviv, Israel
| | - Aamod V Desai
- School of Chemistry, University of St Andrews North Haugh, St Andrews, KY16 9ST, UK
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Mohali, S.A.S. Nagar, Mohali, 160062, India.,Department of Materials Science and Engineering, Tel-Aviv University, 6997801, Tel-Aviv, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, 6997801, Tel-Aviv, Israel
| | - Rajkumar Misra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Mohali, S.A.S. Nagar, Mohali, 160062, India.,Department of Materials Science and Engineering, Tel-Aviv University, 6997801, Tel-Aviv, Israel
| |
Collapse
|
4
|
Vijayakanth T, Sahoo S, Kothavade P, Bhan Sharma V, Kabra D, Zaręba JK, Shanmuganathan K, Boomishankar R. A Ferroelectric Aminophosphonium Cyanoferrate with a Large Electrostrictive Coefficient as a Piezoelectric Nanogenerator. Angew Chem Int Ed Engl 2023; 62:e202214984. [PMID: 36408916 DOI: 10.1002/anie.202214984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
Hybrid materials possessing piezo- and ferroelectric properties emerge as excellent alternatives to conventional piezoceramics due to their merits of facile synthesis, lightweight nature, ease of fabrication and mechanical flexibility. Inspired by the structural stability of aminophosphonium compounds, here we report the first A3 BX6 type cyanometallate [Ph2 (i PrNH)2 P]3 [Fe(CN)6 ] (1), which shows a ferroelectric saturation polarization (Ps ) of 3.71 μC cm-2 . Compound 1 exhibits a high electrostrictive coefficient (Q33 ) of 0.73 m4 C-2 , far exceeding those of piezoceramics (0.034-0.096 m4 C-2 ). Piezoresponse force microscopy (PFM) analysis demonstrates the polarization switching and domain structure of 1 further confirming its ferroelectric nature. Furthermore, thermoplastic polyurethane (TPU) polymer composite films of 1 were prepared and employed as piezoelectric nanogenerators. Notably, the 15 wt % 1-TPU device gave a maximum output voltage of 13.57 V and a power density of 6.03 μW cm-2 .
Collapse
Affiliation(s)
- Thangavel Vijayakanth
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India.,Present address: The Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Supriya Sahoo
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Premkumar Kothavade
- Polymer Science and Engineering Division and Academy of Scientific and Innovative Research, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Vijay Bhan Sharma
- Department of Physics, Indian Institute of Technology, Mumbai, 400076, India
| | - Dinesh Kabra
- Department of Physics, Indian Institute of Technology, Mumbai, 400076, India
| | - Jan K Zaręba
- Institute of Advanced Materials, Wrocław University of Science and Technology, 50-370, Wrocław, Poland
| | - Kadhiravan Shanmuganathan
- Polymer Science and Engineering Division and Academy of Scientific and Innovative Research, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Ramamoorthy Boomishankar
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
5
|
Liu J, Han LJ, Shao T, Su CY, Chen M, Huang PZ, Jia QQ, Fu DW, Lu HF. Metal ion induced dual switchable dielectric and luminescent properties in hybrid halides. Dalton Trans 2022; 51:14408-14412. [PMID: 36111966 DOI: 10.1039/d2dt02148j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new multi-functional organic-inorganic hybrid compound was successfully obtained by regulating metal halides. Apart from excellent luminescence properties, in particular, the introduction of a Mn halide successfully achieved a dual-switchable dielectric property, which could lead to very interesting exploration in sensors.
Collapse
Affiliation(s)
- Jia Liu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China.
| | - Li-Jun Han
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China.
| | - Ting Shao
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China.
| | - Chang-Yuan Su
- Ordered Matter Science Research Centre, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
| | - Ming Chen
- Ordered Matter Science Research Centre, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China.
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China.
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China.
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China.
| |
Collapse
|
6
|
Deswal S, Panday R, Naphade DR, Dixit P, Praveenkumar B, Zaręba JK, Anthopoulos TD, Ogale S, Boomishankar R. Efficient Piezoelectric Energy Harvesting from a Discrete Hybrid Bismuth Bromide Ferroelectric Templated by Phosphonium Cation. Chemistry 2022; 28:e202200751. [PMID: 35357732 DOI: 10.1002/chem.202200751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Bismuth containing hybrid molecular ferroelectrics are receiving tremendous attention in recent years owing to their stable and non-toxic composition. However, these perovskite-like structures are primarily limited to ammonium cations. Herein, we report a new phosphonium based discrete perovskite-like hybrid ferroelectric with a formula [Me(Ph)3 P]3 [Bi2 Br9 ] (MTPBB) and its mechanical energy harvesting capability. The Polarization-Electric field (P-E) measurements resulted in a well-defined ferroelectric hysteresis loop with a remnant polarization value of 2.1 μC cm-2 . Piezoresponse force microscopy experiments enabled visualization of the ferroelectric domain structure and evaluation of the piezoelectric strain coefficient (d33 ) for an MTPBB single crystal and thin film sample. Furthermore, flexible devices incorporating MTPBB in polydimethylsiloxane (PDMS) matrix at various concentrations were fabricated and explored for their mechanical energy harvesting properties. The champion device with 20 wt % of MTPBB in PDMS rendered a maximum peak-to-peak open-circuit voltage of 22.9 V and a maximum power density of 7 μW cm-2 at an optimal load of 4 MΩ. Moreover, the potential of MTPBB-based devices in low power electronics was demonstrated by storing the harvested energy in various electrolytic capacitors.
Collapse
Affiliation(s)
- Swati Deswal
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Rishukumar Panday
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Dipti R Naphade
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Prashant Dixit
- PZT Centre, Armament Research and Development Establishment, Dr. Homi Bhabha Road, Pune, 411021, India
| | - Balu Praveenkumar
- PZT Centre, Armament Research and Development Establishment, Dr. Homi Bhabha Road, Pune, 411021, India
| | - Jan K Zaręba
- Advanced Materials Engineering and Modeling Group, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Satishchandra Ogale
- Department of Physics and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India.,Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology (TCG-CREST), Salt Lake, Kolkata, 700091, India
| | - Ramamoorthy Boomishankar
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|