1
|
Zhang P, Chen K, Li J, Wang M, Li M, Liu Y, Pan Y. Bifunctional Single Atom Catalysts for Rechargeable Zinc-Air Batteries: From Dynamic Mechanism to Rational Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303243. [PMID: 37283478 DOI: 10.1002/adma.202303243] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Indexed: 06/08/2023]
Abstract
Ever-growing demands for rechargeable zinc-air batteries (ZABs) call for efficient bifunctional electrocatalysts. Among various electrocatalysts, single atom catalysts (SACs) have received increasing attention due to the merits of high atom utilization, structural tunability, and remarkable activity. Rational design of bifunctional SACs relies heavily on an in-depth understanding of reaction mechanisms, especially dynamic evolution under electrochemical conditions. This requires a systematic study in dynamic mechanisms to replace current trial and error modes. Herein, fundamental understanding of dynamic oxygen reduction reaction and oxygen evolution reaction mechanisms for SACs is first presented combining in situ and/or operando characterizations and theoretical calculations. By highlighting structure-performance relationships, rational regulation strategies are particularly proposed to facilitate the design of efficient bifunctional SACs. Furthermore, future perspectives and challenges are discussed. This review provides a thorough understanding of dynamic mechanisms and regulation strategies for bifunctional SACs, which are expected to pave the avenue for exploring optimum single atom bifunctional oxygen catalysts and effective ZABs.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kuo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiaye Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Minmin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
2
|
Liu N, Liang Z, Yang F, Wang X, Zhong J, Gui X, Yang G, Zeng Z, Yu D. Flexible Solid-State Metal-Air Batteries: The Booming of Portable Energy Supplies. CHEMSUSCHEM 2023; 16:e202202192. [PMID: 36567256 DOI: 10.1002/cssc.202202192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The rapid development of portable and wearable electronics has given rise to new challenges and provoked research in flexible, lightweight, and affordable energy storage devices. Flexible solid-state metal-air batteries (FSSMABs) are considered promising candidates, owing to their large energy density, mechanical flexibility, and durability. However, the practical applications of FSSMABs require further improvement to meet the demands of long-term stability, high power density, and large operating voltage. This Review presents a detailed discussion of innovative electrocatalysts for the air cathode, followed by a sequential overview of high-performance solid-state electrolytes and metal anodes, and a summary of the current challenges and future perspectives of FSSMABs to promote practical application and large-scale commercialization in the near future.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhanhao Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Fan Yang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 528478, P. R. China
| | - Xiaotong Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Junjie Zhong
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhiping Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
3
|
Xie Y, Chen X, Sun K, Zhang J, Lai WH, Liu H, Wang G. Direct Oxygen-Oxygen Cleavage through Optimizing Interatomic Distances in Dual Single-atom Electrocatalysts for Efficient Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2023; 62:e202301833. [PMID: 36853880 DOI: 10.1002/anie.202301833] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/01/2023]
Abstract
The oxygen reduction reaction (ORR) on transition single-atom catalysts (SACs) is sustainable in energy-conversion devices. However, the atomically controllable fabrication of single-atom sites and the sluggish kinetics of ORR have remained challenging. Here, we accelerate the kinetics of acid ORR through a direct O-O cleavage pathway through using a bi-functional ligand-assisted strategy to pre-control the distance of hetero-metal atoms. Concretely, the as-synthesized Fe-Zn diatomic pairs on carbon substrates exhibited an outstanding ORR performance with the ultrahigh half-wave potential of 0.86 V vs. RHE in acid electrolyte. Experimental evidence and density functional theory calculations confirmed that the Fe-Zn diatomic pairs with a specific distance range of around 3 Å, which is the key to their ultrahigh activity, average the interaction between hetero-diatomic active sites and oxygen molecules. This work offers new insight into atomically controllable SACs synthesis and addresses the limitations of the ORR dissociative mechanism.
Collapse
Affiliation(s)
- Yuhan Xie
- Center for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kaian Sun
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jinqiang Zhang
- Center for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Wei-Hong Lai
- Institute for Superconducting & Electronic Materials, University of Wollongong, Innovation Campus, Wollongong, New South Wales, 2500, Australia
| | - Hao Liu
- Center for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Guoxiu Wang
- Center for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| |
Collapse
|
4
|
Zhao P, Li H, Bu W. A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angew Chem Int Ed Engl 2023; 62:e202210415. [PMID: 36650984 DOI: 10.1002/anie.202210415] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 01/19/2023]
Abstract
Since the insight to fuse Fenton chemistry and nanomedicine into cancer therapy, great signs of progress have been made in the field of chemodynamic therapy (CDT). However, the exact mechanism of CDT is obscured by the unique tumor chemical environment and inevitable nanoparticle-cell interactions, thus impeding further development. In this Scientific Perspective, the significance of CDT is clarified, the complex mechanism is deconstructed into primitive chemical and biological interactions, and the mechanism research directions based on the chemical kinetics and biological signaling pathways are discussed in detail. Moreover, beneficial outlooks are presented to enlighten the evolution of next-generation CDT. Hopefully, this Scientific Perspective can inspire new ideas and advances for CDT and provide a reference for breaking down the interdisciplinary barriers in the field of nanomedicine.
Collapse
Affiliation(s)
- Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P.R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P.R. China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P.R. China
| |
Collapse
|
5
|
Zhao P, Li H, Bu W. A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202210415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P.R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P.R. China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P.R. China
| |
Collapse
|
6
|
Ye C, Zheng M, Li Z, Fan Q, Ma H, Fu X, Wang D, Wang J, Li Y. Electrical Pulse Induced One-step Formation of Atomically Dispersed Pt on Oxide Clusters for Ultra-Low-Temperature Zinc-Air Battery. Angew Chem Int Ed Engl 2022; 61:e202213366. [PMID: 36269941 DOI: 10.1002/anie.202213366] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Atomically dispersed sites anchored on small oxide clusters are attractive new catalytic materials. Herein, we demonstrate an electrical pulse approach to synthesize atomically dispersed Pt on various oxide clusters in one step with nitrogen-doped carbon as the support (Pt1 -MOx /CN). As a proof-of-concept application, Pt1 -FeOx /CN is shown to exhibit high activity for oxygen reduction reaction (ORR) with a half-wave potential of 0.94 V vs RHE, in contrast to the poor catalytic performance of atomically dispersed Pt on large Fe2 O3 nanoparticles. Our work has revealed that, by tuning the size of the iron oxide down to the cluster regime, an optimal OH* adsorption strength for ORR is achieved on Pt1 -FeOx /CN due to the regulation of Pt-O bonds. The unique structure and high catalytic performance of Pt1 -FeOx /CN enable the Zinc-Air batteries an excellent performance at ultralow temperature of -40 °C with a high peak power density of 45.1 mW cm-2 and remarkable cycling stability up to 120 h.
Collapse
Affiliation(s)
- Chenliang Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Meng Zheng
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhiming Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qikui Fan
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haiqing Ma
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xianzhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Huang Q, Xu J, Fang M, Ma L, Cao Y, Fan C, Hu S, Zhang X, Niu D. Realizing Li−S Batteries with Efficient Polysulfide Trapping and Conversion by using a High‐Nitrogen‐Content‐Doped Fe−N−C Porous Carbon Nanosheet‐Modified Separator. ChemistrySelect 2022. [DOI: 10.1002/slct.202201484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qigang Huang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jie Xu
- School of Materials Science and Engineering Anhui University of Technology Maanshan 243002 China
| | - Minxiang Fang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Lianbo Ma
- School of Materials Science and Engineering Anhui University of Technology Maanshan 243002 China
| | - Yongjie Cao
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy Fudan University Shanghai 200433 China
| | - Chuanjie Fan
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shuozhen Hu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xinsheng Zhang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Dongfang Niu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
8
|
Zheng X, Yang J, Xu Z, Wang Q, Wu J, Zhang E, Dou S, Sun W, Wang D, Li Y. Ru-Co Pair Sites Catalyst Boosts the Energetics for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202205946. [PMID: 35638304 DOI: 10.1002/anie.202205946] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 01/29/2023]
Abstract
Manipulating the coordination environment of the active center via anion modulation to reveal tailored activity and selectivity has been widely achieved, especially for carbon-based single-atom site catalysts (SACs). However, tuning ligand fields of the active center by single-site metal cation regulation and identifying the effects on the resulting electronic configuration is seldom explored. Herein, we propose a single-site Ru cation coordination strategy to engineer the electronic properties by constructing a Ru/LiCoO2 SAC with atomically dispersed Ru-Co pair sites. Benefitting from the strong electronic coupling between Ru and Co sites, the catalyst possesses an enhanced electrical conductivity and achieves near-optimal oxygen adsorption energies. Therefore, the optimized catalyst delivers superior oxygen evolution reaction (OER) activity with low overpotential, the high mass activity of 1000 A goxide -1 at a small overpotential of 335 mV, and excellent long-term stability. It also exhibits rapid kinetics with superior rate capability and outstanding durability in a zinc-air battery.
Collapse
Affiliation(s)
- Xiaobo Zheng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhongfei Xu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Qishun Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiabin Wu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Erhuan Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shixue Dou
- Institute for Superconducting and Electronic Materials, Australia Institute for Innovation Material, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Zheng X, Yang J, Xu Z, Wang Q, Wu J, Zhang E, Dou S, Sun W, Wang D, Li Y. Ru–Co Pair Sites Catalyst Boosts the Energetics for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaobo Zheng
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiarui Yang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Zhongfei Xu
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 China
| | - Qishun Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiabin Wu
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Erhuan Zhang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Shixue Dou
- Institute for Superconducting and Electronic Materials Australia Institute for Innovation Material University of Wollongong Wollongong NSW 2522 Australia
| | - Wenping Sun
- School of Materials Science and Engineering State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou 310027 China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
10
|
Venegas R, Zúñiga C, Zagal J, Toro A, Marco JF, Menendez N, Muñoz-Becerra K, Recio FJ. Pyrolyzed Fe‐N‐C catalysts templated by Fe3O4 nanoparticles. Understanding the role of N‐functions and Fe3C on the ORR activity and mechanism. ChemElectroChem 2022. [DOI: 10.1002/celc.202200115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - César Zúñiga
- University of Santiago de Chile: Universidad de Santiago de Chile Departamento de Química de los Materiales CHILE
| | - Jose Zagal
- Universidad de Santiago de Chile Departamento de Química de los Materiales CHILE
| | - Alejandro Toro
- Pontifical Catholic University of Chile: Pontificia Universidad Catolica de Chile Química Física CHILE
| | - Jose F. Marco
- Instituto de Química Física Rocasolano: Instituto de Quimica Fisica Rocasolano Sistemas de baja dimensionalidad, superficies y materia condensada SPAIN
| | - Nieves Menendez
- Universidad Autonoma de Madrid - Campus de Cantoblanco: Universidad Autonoma de Madrid Química Física Aplicada SPAIN
| | - Karina Muñoz-Becerra
- Universidad Bernardo O'Higgins Centro Integrativo de Biología y Química Aplicada CHILE
| | - Francisco Javier Recio
- Universidad Autonoma de Madrid - Campus de Cantoblanco: Universidad Autonoma de Madrid Química Física Aplicada Calle Tomás y ValienteCampus de Cantoblanco 28040 Madrid SPAIN
| |
Collapse
|
11
|
Hu L, Dai C, Chen L, Zhu Y, Hao Y, Zhang Q, Gu L, Feng X, Yuan S, Wang L, Wang B. Metal‐Triazolate‐Framework‐Derived FeN
4
Cl
1
Single‐Atom Catalysts with Hierarchical Porosity for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Linyu Hu
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Chunlong Dai
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Liwei Chen
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Yuhao Zhu
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Yuchen Hao
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Science Beijing 100081 P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Science Beijing 100081 P. R. China
| | - Xiao Feng
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Shuai Yuan
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Lu Wang
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
12
|
Zhang Y, Liu J, Wang J, Zhao Y, Luo D, Yu A, Wang X, Chen Z. Engineering Oversaturated Fe‐N
5
Multifunctional Catalytic Sites for Durable Lithium‐Sulfur Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yongguang Zhang
- School of Materials Science and Engineering State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing South China Normal University Guangzhou 510006 China
| | - Jiabing Liu
- School of Materials Science and Engineering State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China
| | - Jiayi Wang
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing South China Normal University Guangzhou 510006 China
| | - Yan Zhao
- School of Materials Science and Engineering State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China
| | - Dan Luo
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing South China Normal University Guangzhou 510006 China
| | - Aiping Yu
- Department of Chemical Engineering University of Waterloo Waterloo ON N2L 3G1 Canada
| | - Xin Wang
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing South China Normal University Guangzhou 510006 China
| | - Zhongwei Chen
- Department of Chemical Engineering University of Waterloo Waterloo ON N2L 3G1 Canada
| |
Collapse
|
13
|
Qin K, Zhu Z, Yi M, Hu S, Ma F, Zhang J. Synthesis of Tangled Iron‐Nitrogen Co‐doped Carbon Nanosheets through a Dopamine Coordination Strategy for the Oxygen Reduction Reaction. ChemElectroChem 2021. [DOI: 10.1002/celc.202101108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ke Qin
- School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Zhenye Zhu
- School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Mingjie Yi
- School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Shunyou Hu
- School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Fei‐Xiang Ma
- School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Jiaheng Zhang
- School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| |
Collapse
|
14
|
Matsumoto K, Kato M, Yagi I, Xie S, Asakura K, Noro SI, Tohnai N, Campidelli S, Hayashi T, Onoda A. One-Step Preparation of Fe/N/C Single-Atom Catalysts Containing Fe-N 4 Sites from an Iron Complex Precursor with 5,6,7,8-Tetraphenyl-1,12-Diazatriphenylene Ligands. Chemistry 2021; 28:e202103545. [PMID: 34850463 DOI: 10.1002/chem.202103545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/10/2022]
Abstract
Fe/N/C single-atom catalysts containing Fe-Nx sites prepared by pyrolysis are promising cathode materials for fuel cells and metal-air batteries due to their high oxygen reduction reaction (ORR) activities. We have developed iron complexes containing N2- or N3-chelating coordination structures with preorganized aromatic rings in a 1,12-diazatriphenylene framework tethering bromo substituents as precursors to precisely construct Fe-N4 sites in an Fe/N/C catalyst. One-step pyrolysis of the iron complex with carbon black forms atomically dispersed Fe-N4 sites without iron aggregates. X-ray absorption spectroscopy (XAS) and electrochemical measurements revealed that the iron complex with N3-coordination is more effectively converted to Fe-N4 sites catalyzing ORR with a TOF value of 0.21 e site-1 s-1 at 0.8 V vs. RHE. This indicates that the formation of Fe-N4 sites is controlled by precise tuning of the chemical structure of the iron complex precursor.
Collapse
Affiliation(s)
- Koki Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.,Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Kita-ku, Sapporo, 060-0810, Japan
| | - Masaru Kato
- Faculty of Environmental Earth Science, Hokkaido University, North 10 West 5, Kita-ku, Sapporo, 060-0810, Japan.,Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Kita-ku, Sapporo, 060-0810, Japan
| | - Ichizo Yagi
- Faculty of Environmental Earth Science, Hokkaido University, North 10 West 5, Kita-ku, Sapporo, 060-0810, Japan.,Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Kita-ku, Sapporo, 060-0810, Japan
| | - Siqi Xie
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Kita-ku, Sapporo, 060-0810, Japan
| | - Kiyotaka Asakura
- Institute for Catalysis, Hokkaido University, North 21 West 10, Kita-ku, Sapporo, 001-0021, Japan
| | - Shin-Ichiro Noro
- Faculty of Environmental Earth Science, Hokkaido University, North 10 West 5, Kita-ku, Sapporo, 060-0810, Japan.,Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Kita-ku, Sapporo, 060-0810, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Stéphane Campidelli
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Akira Onoda
- Faculty of Environmental Earth Science, Hokkaido University, North 10 West 5, Kita-ku, Sapporo, 060-0810, Japan.,Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Kita-ku, Sapporo, 060-0810, Japan
| |
Collapse
|
15
|
Hu L, Dai C, Chen L, Zhu Y, Hao Y, Zhang Q, Gu L, Feng X, Yuan S, Wang L, Wang B. Metal-Triazolate-Framework-Derived FeN 4 Cl 1 Single-Atom Catalysts with Hierarchical Porosity for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2021; 60:27324-27329. [PMID: 34704324 DOI: 10.1002/anie.202113895] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/26/2021] [Indexed: 02/02/2023]
Abstract
The construction of single-atom catalysts (SACs) with high single atom densities, favorable electronic structures and fast mass transfer is highly desired. We have utilized metal-triazolate (MET) frameworks, a subclass of metal-organic frameworks (MOFs) with high N content, as precursors since they can enhance the density and regulate the electronic structure of single-atom sites, as well as generate abundant mesopores simultaneously. Fe single atoms dispersed in a hierarchically porous N-doped carbon matrix with high metal content (2.78 wt %) and a FeN4 Cl1 configuration (FeN4 Cl1 /NC), as well as mesopores with a pore:volume ratio of 0.92, were obtained via the pyrolysis of a Zn/Fe-bimetallic MET modified with 4,5-dichloroimidazole. FeN4 Cl1 /NC exhibits excellent oxygen reduction reaction (ORR) activity in both alkaline and acidic electrolytes. Density functional theory calculations confirm that Cl can optimize the adsorption free energy of Fe sites to *OH, thereby promoting the ORR process. The catalyst demonstrates great potential in zinc-air batteries. This strategy selects, designs, and adjusts MOFs as precursors for high-performance SACs.
Collapse
Affiliation(s)
- Linyu Hu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chunlong Dai
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liwei Chen
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuhao Zhu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuchen Hao
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, 100081, P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, 100081, P. R. China
| | - Xiao Feng
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shuai Yuan
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lu Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
16
|
Yao W, Chen J, Wang Y, Fang R, Qin Z, Yang X, Chen L, Li Y. Nitrogen-Doped Carbon Composites with Ordered Macropores and Hollow Walls. Angew Chem Int Ed Engl 2021; 60:23729-23734. [PMID: 34467617 DOI: 10.1002/anie.202108396] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Indexed: 11/07/2022]
Abstract
Metal-organic frameworks provide versatile templates for the fabrication of various metal/carbon materials, but most of the derived composites possess only microspores, limiting the accessibility of embedded active sites. Herein, we report the construction of cobalt/nitrogen-doped carbon composites with a three-dimensional (3D) ordered macroporous and hollow-wall structure (H-3DOM-Co/NC) using a single-crystal ordered macropore (SOM)-ZIF-8@ZIF-67 as precursor. During the pyrolysis, the interconnected macroporous structure of SOM-ZIF-8@ZIF-67 is mostly preserved, whereas the pore wall achieves a solid-to-hollow transformation with Co nanoparticles formed in the hollow walls. The 3D-ordered macroporous carbon skeleton may effectively promote long-range mass transfer and the hollow wall can facilitate local accessibility of active sites. This unique structure can greatly boost its catalytic activity in the selective hydrogenation of biomass-derived furfural to cyclopentanol, much superior to its counterparts without this well-designed hierarchically porous structure.
Collapse
Affiliation(s)
- Wen Yao
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jianmin Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yajing Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ruiqi Fang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ze Qin
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xianfeng Yang
- Analytical and Testing Centre, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Liyu Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yingwei Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
17
|
Yang J, Wang Z, Huang CX, Zhang Y, Zhang Q, Chen C, Du J, Zhou X, Zhang Y, Zhou H, Wang L, Zheng X, Gu L, Yang LM, Wu Y. Compressive Strain Modulation of Single Iron Sites on Helical Carbon Support Boosts Electrocatalytic Oxygen Reduction. Angew Chem Int Ed Engl 2021; 60:22722-22728. [PMID: 34402159 DOI: 10.1002/anie.202109058] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/06/2021] [Indexed: 11/08/2022]
Abstract
Designing and modulating the local structure of metal sites is the key to gain the unique selectivity and high activity of single metal site catalysts. Herein, we report strain engineering of curved single atomic iron-nitrogen sites to boost electrocatalytic activity. First, a helical carbon structure with abundant high-curvature surface is realized by carbonization of helical polypyrrole that is templated from self-assembled chiral surfactants. The high-curvature surface introduces compressive strain on the supported Fe-N4 sites. Consequently, the curved Fe-N4 sites with 1.5 % compressed Fe-N bonds exhibit downshifted d-band center than the planar sites. Such a change can weaken the bonding strength between the oxygenated intermediates and metal sites, resulting a much smaller energy barrier for oxygen reduction. Catalytic tests further demonstrate that a kinetic current density of 7.922 mA cm-2 at 0.9 V vs. RHE is obtained in alkaline media for curved Fe-N4 sites, which is 31 times higher than that for planar ones. Our findings shed light on modulating the local three-dimensional structure of single metal sites and boosting the catalytic activity via strain engineering.
Collapse
Affiliation(s)
- Jia Yang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Graphene Engineering Laboratory, Anhui University, Hefei, Anhui, 230601, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhiyuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chun-Xiang Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yida Zhang
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Cai Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Junyi Du
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ying Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huang Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lingxiao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Ming Yang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yuen Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
18
|
Yang J, Wang Z, Huang C, Zhang Y, Zhang Q, Chen C, Du J, Zhou X, Zhang Y, Zhou H, Wang L, Zheng X, Gu L, Yang L, Wu Y. Compressive Strain Modulation of Single Iron Sites on Helical Carbon Support Boosts Electrocatalytic Oxygen Reduction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia Yang
- Institutes of Physical Science and Information Technology Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui Graphene Engineering Laboratory Anhui University Hefei Anhui 230601 China
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhiyuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Chun‐Xiang Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education Hubei Key Laboratory of Materials Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Yida Zhang
- National Synchrotron Radiation Laboratory (NSRL) University of Science and Technology of China Hefei Anhui 230029 China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Cai Chen
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Junyi Du
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Ying Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Huang Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Lingxiao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL) University of Science and Technology of China Hefei Anhui 230029 China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Ming Yang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education Hubei Key Laboratory of Materials Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Yuen Wu
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
19
|
Yao W, Chen J, Wang Y, Fang R, Qin Z, Yang X, Chen L, Li Y. Nitrogen‐Doped Carbon Composites with Ordered Macropores and Hollow Walls. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wen Yao
- State Key Laboratory of Pulp and Paper Engineering School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Jianmin Chen
- State Key Laboratory of Pulp and Paper Engineering School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Yajing Wang
- State Key Laboratory of Pulp and Paper Engineering School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Ruiqi Fang
- State Key Laboratory of Pulp and Paper Engineering School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Ze Qin
- State Key Laboratory of Pulp and Paper Engineering School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Xianfeng Yang
- Analytical and Testing Centre South China University of Technology Guangzhou 510640 P. R. China
| | - Liyu Chen
- State Key Laboratory of Pulp and Paper Engineering School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Yingwei Li
- State Key Laboratory of Pulp and Paper Engineering School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
20
|
Yuan S, Zhang J, Hu L, Li J, Li S, Gao Y, Zhang Q, Gu L, Yang W, Feng X, Wang B. Decarboxylation‐Induced Defects in MOF‐Derived Single Cobalt Atom@Carbon Electrocatalysts for Efficient Oxygen Reduction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuai Yuan
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Jinwei Zhang
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Linyu Hu
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Jiani Li
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Siwu Li
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources Hainan University No 58, Renmin Avenue Haikou 570228 China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Wenxiu Yang
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Xiao Feng
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| |
Collapse
|
21
|
Wang T, Cao X, Qin H, Shang L, Zheng S, Fang F, Jiao L. P-Block Atomically Dispersed Antimony Catalyst for Highly Efficient Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2021; 60:21237-21241. [PMID: 34254419 DOI: 10.1002/anie.202108599] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/14/2022]
Abstract
Main-group (s- and p-block) metals are generally regarded as catalytically inactive due to the delocalized s/p-band. Herein, we successfully synthesized a p-block antimony single-atom catalyst (Sb SAC) with the Sb-N4 configuration for efficient catalysis of the oxygen reduction reaction (ORR). The obtained Sb SAC exhibits superior ORR activity with a half-wave potential of 0.86 V and excellent stability, which outperforms most transition-metal (TM, d-block) based SACs and commercial Pt/C. In addition, it presents an excellent power density of 184.6 mW cm-2 and a high specific capacity (803.5 mAh g-1 ) in Zn-air battery. Both experiment and theoretical calculation manifest that the active catalytic sites are positively charged Sb-N4 single-metal sites, which have closed d shells. Density of states (DOS) results unveil the p orbital of the atomically dispersed Sb cation in Sb SAC can easily interact with O2 -p orbital to form hybrid states, facilitating the charge transfer and generating appropriate adsorption strength for oxygen intermediates, lowering the energy barrier and modulating the rate-determining step. This work sheds light on the atomic-level preparing p-block Sb metal catalyst for highly active ORR, and further provides valuable guidelines for the rational design of other main-group-metal SACs.
Collapse
Affiliation(s)
- Tongzhou Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hongye Qin
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Long Shang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Siyu Zheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fang Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
22
|
Muhyuddin M, Mustarelli P, Santoro C. Recent Advances in Waste Plastic Transformation into Valuable Platinum-Group Metal-Free Electrocatalysts for Oxygen Reduction Reaction. CHEMSUSCHEM 2021; 14:3785-3800. [PMID: 34288512 PMCID: PMC8519148 DOI: 10.1002/cssc.202101252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/20/2021] [Indexed: 05/22/2023]
Abstract
Plastic waste causes severe environmental hazards, owing to inadequate disposal and limited recycling. Under the framework of circular economy, there are urgent demands to valorize plastic waste more safely and sustainably. Therefore, much scientific interest has been witnessed recently in plastic waste-derived electrocatalysts for the oxygen reduction reaction (ORR), where the plastic waste acts as a cost-effective and easily available precursor for the carbon backbone. The ORR is not only a key efficiency indicator for fuel cells and metal-air batteries but also a major obstacle for their commercial realization. The applicability of the aforementioned electrochemical devices is limited, owing to sluggish ORR activity and expensive platinum-group metal electrocatalysts. However, waste-derived ORR electrocatalysts are emerging as a potential substitute that could be inexpensively fabricated upon the conversion of plastic waste into active materials containing earth-abundant transition metals. In this Minireview, very recent research developments regarding plastic waste-derived ORR electrocatalysts are critically summarized with a prime focus on the followed synthesis routes, physicochemical properties of the derived electrocatalysts, and their ultimate electrochemical performance. Finally, the prospects for the future development of plastic waste-derived electrocatalysts are discussed.
Collapse
Affiliation(s)
- Mohsin Muhyuddin
- Department of Material ScienceUniversity of Milano-BicoccaU5 Via Cozzi 5520125MilanItaly
| | - Piercarlo Mustarelli
- Department of Material ScienceUniversity of Milano-BicoccaU5 Via Cozzi 5520125MilanItaly
| | - Carlo Santoro
- Department of Material ScienceUniversity of Milano-BicoccaU5 Via Cozzi 5520125MilanItaly
| |
Collapse
|
23
|
Zang Y, Mi C, Wang R, Chen H, Peng P, Xiang Z, Zang S, Mak TCW. Pyrolysis‐Free Synthesized Catalyst towards Acidic Oxygen Reduction by Deprotonation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ying Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Chunxia Mi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Rui Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Hong Chen
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Peng Peng
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhonghua Xiang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Shuang‐Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Thomas C. W. Mak
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
- Department of Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong SAR China
| |
Collapse
|
24
|
Zhang Y, Liu J, Wang J, Zhao Y, Luo D, Yu A, Wang X, Chen Z. Engineering Oversaturated Fe-N 5 Multifunctional Catalytic Sites for Durable Lithium-Sulfur Batteries. Angew Chem Int Ed Engl 2021; 60:26622-26629. [PMID: 34463010 DOI: 10.1002/anie.202108882] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Indexed: 02/04/2023]
Abstract
Lithium-sulfur (Li-S) batteries are regarded as a promising next-generation system for advanced energy storage owing to a high theoretical energy density of 2600 Wh kg-1 . However, the practical implementation of Li-S batteries has been thwarted by the detrimental shuttling behavior of polysulfides, and the sluggish kinetics in electrochemical processes. Herein, a novel single atom (SA) catalyst with oversaturated Fe-N5 coordination structure (Fe-N5 -C) is precisely synthesized by an absorption-pyrolysis strategy and introduced as an effective sulfur host material. The experimental characterizations and theoretical calculations reveal synergism between atomically dispersed Fe-N5 active sites and the unique carbon support. The results exhibit that the sulfur composite cathode built on the Fe-N5 -C can not only adsorb polysulfides via chemical interaction, but also boost the redox reaction kinetics, thus mitigating the shuttle effect. Meanwhile, the robust three-dimensional nitrogen doped carbon nanofiber with large surface area, and high porosity enables strong physical confinement and fast electron/ion transfer process. Attributed to such unique features, Li-S batteries with S/Fe-N5 -C composite cathode realize outstanding cyclability and rate capability, as well as high areal capacities under raised sulfur loading, which demonstrates great potential in developing advanced Li-S batteries.
Collapse
Affiliation(s)
- Yongguang Zhang
- School of Materials Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China.,South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Jiabing Liu
- School of Materials Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China
| | - Jiayi Wang
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Yan Zhao
- School of Materials Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China
| | - Dan Luo
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Aiping Yu
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Xin Wang
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
25
|
Wu Y, Chen C, Yan X, Sun X, Zhu Q, Li P, Li Y, Liu S, Ma J, Huang Y, Han B. Boosting CO 2 Electroreduction over a Cadmium Single-Atom Catalyst by Tuning of the Axial Coordination Structure. Angew Chem Int Ed Engl 2021; 60:20803-20810. [PMID: 34272915 DOI: 10.1002/anie.202105263] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/05/2021] [Indexed: 12/27/2022]
Abstract
Guided by first-principles calculations, it was found that Cd single-atom catalysts (SACs) have excellent performance in activating CO2 , and the introduction of axial coordination structure to Cd SACs cannot only further decrease the free energy barrier of CO2 reduction, but also suppress the hydrogen evolution reaction (HER). Based on the above discovery, we designed and synthesized a novel Cd SAC that comprises an optimized CdN4 S1 moiety incorporated in a carbon matrix. It was shown that the catalyst exhibited outstanding performance in CO2 electroreduction to CO. The faradaic efficiency (FE) of CO could reach up to 99.7 % with a current density of 182.2 mA cm-2 in a H-type electrolysis cell, and the turnover frequency (TOF) value could achieve 73000 h-1 , which was much higher than that reported to date. This work shows a successful example of how to design highly efficient catalysts guided by theoretical calculations.
Collapse
Affiliation(s)
- Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
| | - Pengsong Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Yiming Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou, 515063, China
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yuying Huang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China.,Physical Science Laboratory, Huairou National Comprehensive Science Center, No. 5 Yanqi East Second Street, Beijing, 101400, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
26
|
Wang T, Cao X, Qin H, Shang L, Zheng S, Fang F, Jiao L. P
‐Block Atomically Dispersed Antimony Catalyst for Highly Efficient Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108599] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tongzhou Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| | - Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| | - Hongye Qin
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| | - Long Shang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| | - Siyu Zheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| | - Fang Fang
- Department of Materials Science Fudan University Shanghai 200433 China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
27
|
Boosting CO
2
Electroreduction over a Cadmium Single‐Atom Catalyst by Tuning of the Axial Coordination Structure. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Zang Y, Mi C, Wang R, Chen H, Peng P, Xiang Z, Zang SQ, Mak TCW. Pyrolysis-Free Synthesized Catalyst towards Acidic Oxygen Reduction by Deprotonation. Angew Chem Int Ed Engl 2021; 60:20865-20871. [PMID: 34288321 DOI: 10.1002/anie.202106661] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/15/2021] [Indexed: 11/10/2022]
Abstract
Acidic oxygen reduction is vital for renewable energy devices such as fuel cells. However, many aspects of the catalytic process are still uncertain-especially the large difference in activity in acidic and alkaline media. Thus, the design and synthesis of model catalysts to determine the active centers and the inactivation mechanism are urgently needed. We report a pyrolysis-free synthesis route to fabricate a catalyst (CPF-Fe@NG) for oxygen reduction in acidic conditions. By introducing a deprotonation process, we extended the oxygen reduction reaction (ORR) activity from alkaline to acidic conditions. CPF-Fe@NG demonstrated outstanding performance with a half-wave potential of 853 mV (vs. RHE) and good stability after 10000 cycles in 1 M HClO4 . The pyrolysis-free route could also be used to assemble fuel cells, with a maximum power density of 126 mW cm-2 . Our findings offer new insights into the ORR process to optimize catalysts for both mechanistic studies and practical applications.
Collapse
Affiliation(s)
- Ying Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunxia Mi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Rui Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hong Chen
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Peng Peng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhonghua Xiang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Thomas C W Mak
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
29
|
Yuan S, Zhang J, Hu L, Li J, Li S, Gao Y, Zhang Q, Gu L, Yang W, Feng X, Wang B. Decarboxylation-Induced Defects in MOF-Derived Single Cobalt Atom@Carbon Electrocatalysts for Efficient Oxygen Reduction. Angew Chem Int Ed Engl 2021; 60:21685-21690. [PMID: 34331501 DOI: 10.1002/anie.202107053] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 11/08/2022]
Abstract
Developing transition metal single-atom catalysts (SACs) for oxygen reduction reaction (ORR) is of great importance. Zeolitic imidazolate frameworks (ZIFs) as a subgroup of metal-organic frameworks (MOFs) are distinguished as SAC precursors, due to their large porosity and N content. However, the activity of the formed metal sites is limited. Herein, we report a decarboxylation-induced defects strategy to improve their intrinsic activity via increasing the defect density. Carboxylate/amide mixed-linker MOF (DMOF) was chosen to produce defective Co SACs (Co@DMOF) by gas-transport of Co species to DMOF upon heating. Comparing with ZIF-8 derived SAC (Co@ZIF-8-900), Co@DMOF-900 with more defects yet one fifth Co content and similar specific double-layer capacitance show better ORR activity and eight times higher turnover frequency (2.015 e s-1 site-1 ). Quantum calculation confirms the defects can weaken the adsorption free energy of OOH on Co sites and further boost the ORR process.
Collapse
Affiliation(s)
- Shuai Yuan
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Jinwei Zhang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Linyu Hu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Jiani Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Siwu Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou, 570228, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenxiu Yang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Xiao Feng
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| |
Collapse
|