1
|
Berlanga I, Rosenkranz A. Covalent organic frameworks in tribology - A perspective. Adv Colloid Interface Sci 2024; 331:103228. [PMID: 38901060 DOI: 10.1016/j.cis.2024.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) are an emerging class of crystalline porous materials formed through covalent bonds between organic building blocks. COFs uniquely combine a large surface area, an excellent stability, numerous abundant active sites, and tunable functionalities, thus making them highly attractive for numerous applications. Especially, their abundant active sites and weak interlayer interaction make these materials promising candidates for tribological research. Recently, notable attention has been paid to COFs as lubricant additives due to their excellent tribological performance. Our review aims at critically summarizing the state-of-art developments of 2D COFs in tribology. We discuss their structural and functional design principles, as well as synthetic strategies with a special focus on tribology. The generation of COF thin films is also assessed in detail, which can alleviate their most challenging drawbacks for this application. Subsequently, we analyze the existing state-of-the-art regarding the usage of COFs as lubricant additives, self-lubrication composite coatings, and solid lubricants at the nanoscale. Finally, critical challenges and future trends of 2D COFs in tribology are outlined to initiate and boost new research activities in this exciting field.
Collapse
Affiliation(s)
- Isadora Berlanga
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Santiago de Chile, Chile.
| | - Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Santiago de Chile, Chile; ANID - Millennium Science Initiative Program, Millennium Nuclei of Advanced MXenes for Sustainable Applications (AMXSA), Santiago, Chile.
| |
Collapse
|
2
|
Zhao W, Zhu Q, Wu X, Zhao D. The development of catalysts and auxiliaries for the synthesis of covalent organic frameworks. Chem Soc Rev 2024; 53:7531-7565. [PMID: 38895859 DOI: 10.1039/d3cs00908d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Covalent organic frameworks (COFs) have recently seen significant advancements. Large quantities of structurally & functionally oriented COFs with a wide range of applications, such as gas adsorption, catalysis, separation, and drug delivery, have been explored. Recent achievements in this field are primarily focused on advancing synthetic methodologies, with catalysts playing a crucial role in achieving highly crystalline COF materials, particularly those featuring novel linkages and chemistry. A series of reviews have already been published over the last decade, covering the fundamentals, synthesis, and applications of COFs. However, despite the pivotal role that catalysts and auxiliaries play in forming COF materials and adjusting their properties (e.g., crystallinity, porosity, stability, and morphology), limited attention has been devoted to these essential components. In this Critical Review, we mainly focus on the state-of-the-art progress of catalysts and auxiliaries applied to the synthesis of COFs. The catalysts include four categories: acid catalysts, base catalysts, transition-metal catalysts, and other catalysts. The auxiliaries, such as modulators, oxygen, and surfactants, are discussed as well. This is then followed by the description of several specific applications derived from the utilization of catalysts and auxiliaries. Lastly, a perspective on the major challenges and opportunities associated with catalysts and auxiliaries is provided.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiang Zhu
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Xiaofeng Wu
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
3
|
He C, Tao S, Liu R, Zhi Y, Jiang D. Covalent Organic Frameworks: Linkage Chemistry and Its Critical Role in The Evolution of π Electronic Structures and Functions. Angew Chem Int Ed Engl 2024; 63:e202403472. [PMID: 38502777 DOI: 10.1002/anie.202403472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Covalent organic frameworks (COFs) provide a molecular platform for designing a novel class of functional materials with well-defined structures. A crucial structural parameter is the linkage, which dictates how knot and linker units are connected to form two-dimensional polymers and layer frameworks, shaping ordered π-array and porous architectures. However, the roles of linkage in the development of ordered π electronic structures and functions remain fundamental yet unresolved issues. Here we report the designed synthesis of COFs featuring four representative linkages: hydrazone, imine, azine, and C=C bonds, to elucidate their impacts on the evolution of π electronic structures and functions. Our observations revealed that the hydrazone linkage provides a non-conjugated connection, while imine and azine allow partial π conjugation, and the C=C bond permits full π-conjugation. Importantly, the linkage profoundly influences the control of π electronic structures and functions, unraveling its pivotal role in determining key electronic properties such as band gap, frontier energy levels, light absorption, luminescence, carrier density and mobility, and magnetic permeability. These findings highlight the significance of linkage chemistry in COFs and offer a general and transformative guidance for designing framework materials to achieve electronic functions.
Collapse
Affiliation(s)
- Chunyu He
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yongfeng Zhi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
4
|
Al-Dolaimy F, Saraswat SK, Hussein BA, Hussein UAR, Saeed SM, Kareem AT, Abdulwahid AS, Mizal TL, Muzammil K, Alawadi AH, Alsalamy A, Hussin F, Kzarb MH. A review of recent advancement in covalent organic framework (COFs) synthesis and characterization with a focus on their applications in antibacterial activity. Micron 2024; 179:103595. [PMID: 38341939 DOI: 10.1016/j.micron.2024.103595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
The primary objective of this review is to present a comprehensive examination of the synthesis, characterization, and antibacterial applications of covalent organic frameworks (COFs). COFs represent a distinct category of porous materials characterized by a blend of advantageous features, including customizable pore dimensions, substantial surface area, and adaptable chemical properties. These attributes position COFs as promising contenders for various applications, notably in the realm of antibacterial activity. COFs exhibit considerable potential in the domain of antibacterial applications, owing to their amenability to functionalization with antibacterial agents. The scientific community is actively exploring COFs that have been imbued with metal ions, such as copper or silver, given their observed robust antibacterial properties. These investigations strongly suggest that COFs could be harnessed effectively as potent antibacterial agents across a diverse array of applications. Finally, COFs hold immense promise as a novel class of materials for antibacterial applications, shedding light on the synthesis, characterization, and functionalization of COFs tailored for specific purposes. The potential of COFs as effective antibacterial agents beckons further exploration and underscores their potential to revolutionize antibacterial strategies in various domains.
Collapse
Affiliation(s)
| | | | - Baydaa Abed Hussein
- Department of Medical Engineering, Al-Manara College for Medical Sciences, Maysan, Amarah, Iraq.
| | | | | | - Ashwaq Talib Kareem
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq.
| | | | - Thair L Mizal
- Department of Medical Engineering, Al-Esraa University College, Baghdad, Iraq.
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, KSA.
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Najaf, Iraq.
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq.
| | - Farah Hussin
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq.
| | - Mazin Hadi Kzarb
- College of Physical Education and Sport Sciences, Al-Mustaqbal University, 51001 Hillah, Babil, Iraq.
| |
Collapse
|
5
|
Soni V, Patial S, Kumar A, Singh P, Thakur VK, Ahamad T, Van Le Q, Luque R, Raizada P, Nguyen VH. Covalent organic frameworks (COFs) core@shell nanohybrids: Novel nanomaterial support towards environmental sustainability applications. ENVIRONMENTAL RESEARCH 2023; 232:116353. [PMID: 37295591 DOI: 10.1016/j.envres.2023.116353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Covalent organic frameworks (COFs) based on core@shell nanohybrids have recently received significant attention and have become one of the most promising strategies for improving the stability and catalytic activity of COFs. Compared with traditional core@shell, COF-based core@shell hybrids own remarkable advantages, including size-selective reactions, bifunctional catalysis, and integration of multiple functions. These properties could enhance the stability and recyclability, resistance to sintering, and maximize the electronic interaction between the core and the shell. The activity and selectivity of COF-based core@shell could be simultaneously improved by taking benefit of the existing synergy between the functional encapsulating shell and the covered core material. Considering that, we have highlighted various topological diagrams and the role of COFs in COF-based core@shell hybrid for activity and selectivity enhancement. This concept article provides all-inclusive advances in the design and catalytic applications of COF-based core@shell hybrids. Various synthetic techniques have been developed for the facile tailoring of functional core@shell hybrids, including novel seed growth, in-situ, layer-by-layer, and one-pot method. Importantly, charge dynamics and structure-performance relationships are investigated through different characterization techniques. Different COF-based core@shell hybrids with established synergistic interactions have been detailed, and their influence on stability and catalytic efficiency for various applications is explained and discussed in this contribution. A comprehensive discussion on the remaining challenges associated with COF-based core@shell nanoparticles and research directions has also been provided to deliver insightful ideas for additional future developments.
Collapse
Affiliation(s)
- Vatika Soni
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Shilpa Patial
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Abhinandan Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., Moscow, 117198, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India.
| | - Van-Huy Nguyen
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
6
|
Yang S, Yang R, He J, Zhang Y, Yuan Y, Yue T, Sheng Q. Au Nanoparticles Functionalized Covalent-Organic-Framework-Based Electrochemical Sensor for Sensitive Detection of Ractopamine. Foods 2023; 12:foods12040842. [PMID: 36832917 PMCID: PMC9956286 DOI: 10.3390/foods12040842] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Ractopamine, as a feed additive, has attracted much attention due to its excessive use, leading to the damage of the human nervous system and physiological function. Therefore, it is of great practical significance to establish a rapid and effective method for the detection of ractopamine in food. Electrochemical sensors served as a promising technique for efficiently sensing food contaminants due to their low cost, sensitive response and simple operation. In this study, an electrochemical sensor for ractopamine detection based on Au nanoparticles functionalized covalent organic frameworks (AuNPs@COFs) was constructed. The AuNPs@COF nanocomposite was synthesized by in situ reduction and was characterized by FTIR spectroscopy, transmission electron microscope and electrochemical methods. The electrochemical sensing performance of AuNPs@COF-modified glassy carbon electrode for ractopamine was investigated using the electrochemical method. The proposed sensor exhibited excellent sensing abilities towards ractopamine and was used for the detection of ractopamine in meat samples. The results showed that this method has high sensitivity and good reliability for the detection of ractopamine. The linear range was 1.2-1600 μmol/L, and the limit of detection (LOD) was 0.12 μmol/L. It is expected that the proposed AuNPs@COF nanocomposites hold great promise for food safety sensing and should be extended for application in other related fields.
Collapse
|
7
|
Ji H, Yan G, Zou P, Wang H, Li M, Feng Y, Qu X, Geng D, Shi J, Zhang X. Synthesis of Vinylene-Linked Thiopyrylium-, Pyrylium-, and Pyridinium-Based Covalent Organic Frameworks by Acid-Catalyzed Aldol Condensation. Chemistry 2023; 29:e202202787. [PMID: 36196504 DOI: 10.1002/chem.202202787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 11/12/2022]
Abstract
The development of new vinylene-linked covalent organic frameworks (COFs) with special ionic structure and high stability is challenging. Herein, we report a facile, general method for constructing ionic vinylene-linked thiopyrylium-based COFs from 2,4,6-trimethylpyrylium tetrafluoroborate and other common reagents by means of acid-catalyzed Aldol condensation. Besides, pyrylium-, and pyridinium-based COFs also can be prepared from the same monomer under slightly different reaction conditions. The COFs exhibited uniform nanofibrous morphologies with excellent crystallinities, special ionic structures, well-defined nanochannels, and high specific surface areas.
Collapse
Affiliation(s)
- Haifeng Ji
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| | - Peng Zou
- Downhole Technology Service Company, Bohai Drilling Engineering Company Limited, CNPC, Dagang, Tianjin, 300283, P. R. China
| | - Han Wang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| | - Mengke Li
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| | - Dongling Geng
- College of Science, Civil Aviation University of China, Tianjin, 300300, P. R. China
| | - Jingjing Shi
- School of Science, Nantong University, Nantong, 226019, Jiangsu Province, P. R. China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Street, Tianjin, 300130, P. R. China
| |
Collapse
|
8
|
Gan W, Zhang Z, Zheng X, Yu Z, Xie C, Wen H, Sun L, Zhao Y. Modulation of Imine‐based Aggregation‐Induced Emission Fluorescence Performance Through the Extension of Molecular Linkers. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Weijin Gan
- School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Zhaohui Zhang
- School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Xuhan Zheng
- School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Zefang Yu
- School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Chenxiao Xie
- School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Hongqi Wen
- Qingdao Water Affairs Development Service Center Qingdao 266000 P. R. China
| | - Lishu Sun
- School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yingjie Zhao
- School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| |
Collapse
|
9
|
Bi S, Zhang Z, Meng F, Wu D, Chen J, Zhang F. Heteroatom‐Embedded Approach to Vinylene‐Linked Covalent Organic Frameworks with Isoelectronic Structures for Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuai Bi
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zixing Zhang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fancheng Meng
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jie‐Sheng Chen
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
10
|
Jin E, Fu S, Hanayama H, Addicoat MA, Wei W, Chen Q, Graf R, Landfester K, Bonn M, Zhang KAI, Wang HI, Müllen K, Narita A. A Nanographene‐Based Two‐Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Enquan Jin
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Shuai Fu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University Kunigami-gun, Okinawa 904-0495 Japan
| | - Matthew A. Addicoat
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS UK
| | - Wenxin Wei
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Qiang Chen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Robert Graf
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | | - Mischa Bonn
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Kai A. I. Zhang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Department of Materials Science Fudan University Shanghai 200433 P.R. China
| | - Hai I. Wang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University Kunigami-gun, Okinawa 904-0495 Japan
| |
Collapse
|
11
|
Jin E, Fu S, Hanayama H, Addicoat MA, Wei W, Chen Q, Graf R, Landfester K, Bonn M, Zhang KAI, Wang HI, Müllen K, Narita A. A Nanographene-Based Two-Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202114059. [PMID: 34870362 PMCID: PMC9299764 DOI: 10.1002/anie.202114059] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 01/14/2023]
Abstract
Synthesis of covalent organic frameworks (COFs) with desirable organic units furnishes advanced materials with unique functionalities. As an emerging class of two-dimensional (2D) COFs, sp2 -carbon-conjugated COFs provide a facile platform to build highly stable and crystalline porous polymers. Herein, a 2D olefin-linked COF was prepared by employing nanographene, namely, dibenzo[hi,st]ovalene (DBOV), as a building block. The DBOV-COF exhibits unique ABC-stacked lattices, enhanced stability, and charge-carrier mobility of ≈0.6 cm2 V-1 s-1 inferred from ultrafast terahertz photoconductivity measurements. The ABC-stacking structure was revealed by the high-resolution transmission electron microscopy and powder X-ray diffraction. DBOV-COF demonstrated remarkable photocatalytic activity in hydroxylation, which was attributed to the exposure of narrow-energy-gap DBOV cores in the COF pores, in conjunction with efficient charge transport following light absorption.
Collapse
Affiliation(s)
- Enquan Jin
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shuai Fu
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami-gun, Okinawa904-0495Japan
| | - Matthew A. Addicoat
- School of Science and TechnologyNottingham Trent UniversityClifton Lane, NottinghamNG11 8NSUK
| | - Wenxin Wei
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Qiang Chen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Robert Graf
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | | | - Mischa Bonn
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Kai A. I. Zhang
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of Materials ScienceFudan UniversityShanghai200433P.R. China
| | - Hai I. Wang
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Klaus Müllen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Akimitsu Narita
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami-gun, Okinawa904-0495Japan
| |
Collapse
|
12
|
Jin E, Geng K, Fu S, Addicoat MA, Zheng W, Xie S, Hu J, Hou X, Wu X, Jiang Q, Xu Q, Wang HI, Jiang D. Module‐Patterned Polymerization towards Crystalline 2D sp
2
‐Carbon Covalent Organic Framework Semiconductors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Enquan Jin
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Keyu Geng
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shuai Fu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Matthew A. Addicoat
- School of Science and Technology Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Shuailei Xie
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| | - Jun‐Shan Hu
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xudong Hou
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xiao Wu
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Qiuhong Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Qing‐Hua Xu
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Hai I. Wang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Donglin Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| |
Collapse
|
13
|
Jiang D, Jin E, Gen K, Fu S, Addicoat MA, Zheng W, Xie S, Hu J, Wu X, Jiang Q, Xu QH, Wang HI, Hou X. Module-Patterned Polymerization towards Crystalline 2D sp2-Carbon Covalent Organic Framework Semiconductors. Angew Chem Int Ed Engl 2021; 61:e202115020. [PMID: 34931425 DOI: 10.1002/anie.202115020] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 11/08/2022]
Abstract
Despite a rapid progress over the past decade, most polycondensation systems even upon a small structural variation of building units eventually result in amorphous polymers other than desired crystalline covalent organic frameworks. This synthetic dilemma is a central and challenging issue of the field. Here we report a novel approach based on module-patterned polymerization to enable efficient and designed synthesis of crystalline porous polymeric frameworks. This strategy features a wide applicability to allow the use of various knots of different structures, enables polycondensation with diverse linkers , and develops a diversity of novel crystalline 2D polymers and frameworks, as demonstrated by using the C=C bond formation polycondensation reaction. The new sp 2 carbon frameworks are highly emissive and enable up-conversion luminescence, offer low bandgap semiconductors with tunable band structures, and achieve ultrahigh charge mobilities close to theoretically predicted maxima.
Collapse
Affiliation(s)
- Donglin Jiang
- National University of Singapore, Department of Chemistry, Faculty of Science, 3 Science Drive 3, 117543, Singapore, SINGAPORE
| | - Enquan Jin
- National University of Singapore - Kent Ridge Campus: National University of Singapore, Chemistry, SINGAPORE
| | - Keyu Gen
- National University of Singapore - Kent Ridge Campus: National University of Singapore, Chemistry, SINGAPORE
| | - Shuai Fu
- Max Planck Institute for Polymer Research: Max-Planck-Institut fur Polymerforschung, Polymer, GERMANY
| | | | - Wenhao Zheng
- Max Planck Institute for Polymer Research: Max-Planck-Institut fur Polymerforschung, Polymer, GERMANY
| | - Shuailei Xie
- National University of Singapore - Kent Ridge Campus: National University of Singapore, Chemistry, SINGAPORE
| | - Junsha Hu
- National University of Singapore - Kent Ridge Campus: National University of Singapore, Chemistry, SINGAPORE
| | - Xiao Wu
- National University of Singapore - Kent Ridge Campus: National University of Singapore, Chemistry, SINGAPORE
| | - Qiuhong Jiang
- National University of Singapore - Kent Ridge Campus: National University of Singapore, Chemistry, SINGAPORE
| | - Qing-Hua Xu
- National University of Singapore - Kent Ridge Campus: National University of Singapore, Chemistry, SINGAPORE
| | - Hai I Wang
- Max Planck Institute for Polymer Research: Max-Planck-Institut fur Polymerforschung, Polymer, GERMANY
| | - Xudong Hou
- National University of Singapore - Kent Ridge Campus: National University of Singapore, Department of Chemistry, SINGAPORE
| |
Collapse
|
14
|
Bi S, Zhang Z, Meng F, Wu D, Chen JS, Zhang F. Heteroatom-Embedded Approach to Vinylene-Linked Covalent Organic Frameworks with Isoelectronic Structures for Photoredox Catalysis. Angew Chem Int Ed Engl 2021; 61:e202111627. [PMID: 34813141 DOI: 10.1002/anie.202111627] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/06/2022]
Abstract
Embedding heteroatoms into the main backbones of polymeric materials has become an efficient tool for tailoring their structures and improving their properties. However, owing to comparatively harsh heteroatom-doping conditions, this has rarely been explored in covalent organic frameworks (COFs). Herein, upon aldol condensation of a trimethyl-substituted pyrylium salt with a tritopic aromatic aldehyde, a two-dimensional oxonium-embedded COF with vinylene linkages was achieved, which was further converted to a neutral pyridine-cored COF by in situ replacement of oxonium ions with nitrogen atoms under ammonia treatment. The two heteroatom-embedded COFs are conceptually isoelectronic with each other, featuring similar geometric structures but different electronic structures, rendering them capable of catalyzing the visible-light-promoted multi-component synthesis of tri-substituted pyridine derivatives with good recyclability.
Collapse
Affiliation(s)
- Shuai Bi
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zixing Zhang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fancheng Meng
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
15
|
Ghosh R, Paesani F. Topology-Mediated Enhanced Polaron Coherence in Covalent Organic Frameworks. J Phys Chem Lett 2021; 12:9442-9448. [PMID: 34554754 DOI: 10.1021/acs.jpclett.1c02454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We employ the Holstein model for polarons to investigate the relationship among defects, topology, Coulomb trapping, and polaron delocalization in covalent organic frameworks (COFs). We find that intrasheet topological connectivity and π-column density can override disorder-induced deep traps and significantly enhance polaron migration by several orders of magnitude in good agreement with recent experimental observations. The combination of percolation networks and micropores makes trigonal COFs ideally suited for charge transport followed by kagome/tetragonal and hexagonal structures. By comparing the polaron spectral signatures and coherence numbers of large three-dimensional frameworks having a maximum of 180 coupled chromophores, we show that controlling nanoscale defects and the location of the counteranion is critical for the design of new COF-based materials yielding higher mobilities. Our analysis establishes design strategies for enhanced conductivity in COFs that can be readily generalized to other classes of conductive materials such as metal-organic frameworks and perovskites.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry and Biochemistry, ‡Materials Science and Engineering, and §San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, ‡Materials Science and Engineering, and §San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
16
|
Meng F, Bi S, Sun Z, Jiang B, Wu D, Chen JS, Zhang F. Synthesis of Ionic Vinylene-Linked Covalent Organic Frameworks through Quaternization-Activated Knoevenagel Condensation. Angew Chem Int Ed Engl 2021; 60:13614-13620. [PMID: 33844881 DOI: 10.1002/anie.202104375] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 12/25/2022]
Abstract
We developed a simple approach to synthesizing ionic vinylene-linked two-dimensional covalent organic frameworks (COFs) through a quaternization-promoted Knoevenagel condensation at three aromatic methyl carbon atoms of N-ethyl-2,4,6-trimethylpyridinium halide with multitopic aromatic aldehyde derivatives. The resultant COFs exhibited a honeycomb-like structure with high crystallinity and surface areas as large as 1343 m2 g-1 . The regular shape-persistent nanochannels and the positively charged polymeric frameworks allowed the COFs to be uniformly composited with linear polyethylene oxide and lithium salt, displaying ionic conductivity as high as 2.72×10-3 S cm-1 .
Collapse
Affiliation(s)
- Fancheng Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuai Bi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zuobang Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Biao Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
17
|
Meng F, Bi S, Sun Z, Jiang B, Wu D, Chen J, Zhang F. Synthesis of Ionic Vinylene‐Linked Covalent Organic Frameworks through Quaternization‐Activated Knoevenagel Condensation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fancheng Meng
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Shuai Bi
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Zuobang Sun
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Biao Jiang
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Jie‐Sheng Chen
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
18
|
Krishnaraj C, Sekhar Jena H, Bourda L, Laemont A, Pachfule P, Roeser J, Chandran CV, Borgmans S, Rogge SMJ, Leus K, Stevens CV, Martens JA, Van Speybroeck V, Breynaert E, Thomas A, Van Der Voort P. Strongly Reducing (Diarylamino)benzene-Based Covalent Organic Framework for Metal-Free Visible Light Photocatalytic H 2O 2 Generation. J Am Chem Soc 2020; 142:20107-20116. [PMID: 33185433 PMCID: PMC7705891 DOI: 10.1021/jacs.0c09684] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Photocatalytic
reduction of molecular oxygen is a promising route
toward sustainable production of hydrogen peroxide (H2O2). This challenging process requires photoactive semiconductors
enabling solar energy driven generation and separation of electrons
and holes with high charge transfer kinetics. Covalent organic frameworks
(COFs) are an emerging class of photoactive semiconductors, tunable
at a molecular level for high charge carrier generation and transfer.
Herein, we report two newly designed two-dimensional COFs based on
a (diarylamino)benzene linker that form a Kagome (kgm) lattice and show strong visible light absorption. Their high crystallinity
and large surface areas (up to 1165 m2·g–1) allow efficient charge transfer and diffusion. The diarylamine
(donor) unit promotes strong reduction properties, enabling these
COFs to efficiently reduce oxygen to form H2O2. Overall, the use of a metal-free, recyclable photocatalytic system
allows efficient photocatalytic solar transformations.
Collapse
Affiliation(s)
- Chidharth Krishnaraj
- COMOC - Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium.,Department of Chemistry/Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin, Germany
| | - Himanshu Sekhar Jena
- COMOC - Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Laurens Bourda
- COMOC - Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium.,XStruct - Bio-Inorganic Chemistry, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Andreas Laemont
- COMOC - Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Pradip Pachfule
- Department of Chemistry/Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin, Germany
| | - Jérôme Roeser
- Department of Chemistry/Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin, Germany
| | - C Vinod Chandran
- NMRCoRe, Celestijnenlaan 200F, Box 2461, 3001 Leuven, Belgium.,Center for Surface Chemistry and Catalysis - Characterisation and Application Team (COK-kat), Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001 Leuven, Belgium
| | - Sander Borgmans
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, B-9052 Zwijnaarde, Belgium
| | - Sven M J Rogge
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, B-9052 Zwijnaarde, Belgium
| | - Karen Leus
- COMOC - Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Christian V Stevens
- Synthesis, Bioresources and Bioorganic Chemistry Research Group (SynBioC), Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Johan A Martens
- NMRCoRe, Celestijnenlaan 200F, Box 2461, 3001 Leuven, Belgium.,Center for Surface Chemistry and Catalysis - Characterisation and Application Team (COK-kat), Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001 Leuven, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, B-9052 Zwijnaarde, Belgium
| | - Eric Breynaert
- NMRCoRe, Celestijnenlaan 200F, Box 2461, 3001 Leuven, Belgium.,Center for Surface Chemistry and Catalysis - Characterisation and Application Team (COK-kat), Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, Box 2461, 3001 Leuven, Belgium
| | - Arne Thomas
- Department of Chemistry/Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin, Germany
| | - Pascal Van Der Voort
- COMOC - Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| |
Collapse
|