Qiu L, Zhang H, Bick T, Martin J, Wendler P, Böker A, Glebe U, Xing C. Construction of Highly Ordered Glyco-Inside Nano-Assemblies through RAFT Dispersion Polymerization of Galactose-Decorated Monomer.
Angew Chem Int Ed Engl 2021;
60:11098-11103. [PMID:
33565244 PMCID:
PMC8252037 DOI:
10.1002/anie.202015692]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/31/2021] [Indexed: 01/15/2023]
Abstract
Glyco-assemblies derived from amphiphilic sugar-decorated block copolymers (ASBCs) have emerged prominently due to their wide application, for example, in biomedicine and as drug carriers. However, to efficiently construct these glyco-assemblies is still a challenge. Herein, we report an efficient technology for the synthesis of glyco-inside nano-assemblies by utilizing RAFT polymerization of a galactose-decorated methacrylate for polymerization-induced self-assembly (PISA). Using this approach, a series of highly ordered glyco-inside nano-assemblies containing intermediate morphologies were fabricated by adjusting the length of the hydrophobic glycoblock and the polymerization solids content. A specific morphology of complex vesicles was captured during the PISA process and the formation mechanism is explained by the morphology of its precursor and intermediate. Thus, this method establishes a powerful route to fabricate glyco-assemblies with tunable morphologies and variable sizes, which is significant to enable the large-scale fabrication and wide application of glyco-assemblies.
Collapse