1
|
Sahu S, Sharma S, Kaur A, Singh G, Khatri M, Arya SK. Algal carbohydrate polymers: Catalytic innovations for sustainable development. Carbohydr Polym 2024; 327:121691. [PMID: 38171696 DOI: 10.1016/j.carbpol.2023.121691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Algal polysaccharides, harnessed for their catalytic potential, embody a compelling narrative in sustainable chemistry. This review explores the complex domains of algal carbohydrate-based catalysis, revealing its diverse trajectory. Starting with algal polysaccharide synthesis and characterization methods as catalysts, the investigation includes sophisticated techniques like NMR spectroscopy that provide deep insights into the structural variety of these materials. Algal polysaccharides undergo various preparation and modification techniques to enhance their catalytic activity such as immobilization. Homogeneous catalysis, revealing its significance in practical applications like crafting organic compounds and facilitating chemical transformations. Recent studies showcase how algal-derived catalysts prove to be remarkably versatile, showcasing their ability to customise reactions for specific substances. Heterogeneous catalysis, it highlights the significance of immobilization techniques, playing a central role in ensuring stability and the ability to reuse catalysts. The practical applications of heterogeneous algal catalysts in converting biomass and breaking down contaminants, supported by real-life case studies, emphasize their effectiveness. In sustainable chemistry, algal polysaccharides emerge as compelling catalysts, offering a unique intersection of eco-friendliness, structural diversity, and versatile catalytic properties. Tackling challenges such as dealing with complex structural variations, ensuring the stability of the catalyst, and addressing economic considerations calls for out-of-the-box and inventive solutions. Embracing the circular economy mindset not only assures sustainable catalyst design but also promotes efficient recycling practices. The use of algal carbohydrates in catalysis stands out as a source of optimism, paving the way for a future where chemistry aligns seamlessly with nature, guiding us toward a sustainable, eco-friendly, and thriving tomorrow. This review encapsulates-structural insights, catalytic applications, challenges, and future perspectives-invoking a call for collective commitment to catalyze a sustainable scientific revolution.
Collapse
Affiliation(s)
- Sudarshan Sahu
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Shalini Sharma
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Anupreet Kaur
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Madhu Khatri
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Shailendra Kumar Arya
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
2
|
Cruchade H, Medeiros-Costa IC, Nesterenko N, Gilson JP, Pinard L, Beuque A, Mintova S. Catalytic Routes for Direct Methane Conversion to Hydrocarbons and Hydrogen: Current State and Opportunities. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hugo Cruchade
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14050Caen, France
| | | | | | - Jean-Pierre Gilson
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14050Caen, France
| | - Ludovic Pinard
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14050Caen, France
| | - Antoine Beuque
- Institut de Chimie des Milieux et Matériaux de Poitiers (ICM2P), UMR 7285 CNRS, 86073Poitiers, France
| | - Svetlana Mintova
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14050Caen, France
| |
Collapse
|
3
|
Ran J, Alfilfil L, Li J, Yangcheng R, Liu Z, Wang Q, Cui Y, Cao T, Qiao M, Yao K, Zhang D, Wang J. Tailoring interfacial microenvironment of palladium‐zeolite catalysts for the efficient low‐temperature hydrodeoxygenation of vanillin in water. ChemCatChem 2022. [DOI: 10.1002/cctc.202200397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiansu Ran
- Chongqing University Department State Key Laboratory of Coal Mine Disaster Dynamics and Control CHINA
| | - Lujain Alfilfil
- King Abdullah University of Science and Technology Advanced Membranes and Porous Materials Center SAUDI ARABIA
| | - Jingwei Li
- Chongqing University Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering CHINA
| | - Ruixue Yangcheng
- Chongqing University Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering CHINA
| | - Zhaohui Liu
- Chongqing University Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering CHINA
| | - Qin Wang
- Chongqing University Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering CHINA
| | - Yuntong Cui
- Chongqing University Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering CHINA
| | - Tong Cao
- Chongqing University Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering CHINA
| | - Min Qiao
- Chongqing University Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering CHINA
| | - Kexin Yao
- Chongqing University Department State Key Laboratory of Coal Mine Disaster Dynamics and Control CHINA
| | - Daliang Zhang
- Chongqing University Department State Key Laboratory of Coal Mine Disaster Dynamics and Control CHINA
| | - Jianjian Wang
- Chongqing University college of chemistry and chemical engineering CHINA
| |
Collapse
|
4
|
Le T, Wang B. First-Principles Study of Interaction between Molecules and Lewis Acid Zeolites Manipulated by Injection of Energized Charge Carriers. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tien Le
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Bin Wang
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
5
|
Ghojavand S, Clatworthy EB, Vicente A, Dib E, Ruaux V, Debost M, El Fallah J, Mintova S. The role of mixed alkali metal cations on the formation of nanosized CHA zeolite from colloidal precursor suspension. J Colloid Interface Sci 2021; 604:350-357. [PMID: 34273779 DOI: 10.1016/j.jcis.2021.06.176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/08/2021] [Accepted: 06/30/2021] [Indexed: 11/26/2022]
Abstract
A clear understanding of the crystal formation pathways of zeolites remains one of the most challenging issues to date. Here we investigate the synthesis of nanosized chabazite (CHA) zeolites using organic template-free colloidal suspensions by varying the time of aging at room temperature and the time of hydrothermal treatment at 90 °C. The role of mixed alkali metal cations (Na+, K+, Cs+) on the formation of CHA in the colloidal suspensions was studied. Increasing the aging time of the precursor colloidal suspension from 4 to 17 days resulted in faster crystallization of CHA nanocrystals (3 h instead of 7 h at 90 °C) to afford significantly smaller particles (60 nm vs 600 nm). During the crystallization a considerable change in the content of inorganic cations in the recovered solid material was observed to coincide with the formation of the CHA nanocrystals. The Na+ cations were found to direct the formation of condensed and pre-shaped aluminosilicate particles in the colloidal precursor suspensions, while K+ cations facilitated the formation of secondary building units (SBUs) of the CHA type framework structure such as d6r and cha cages, and the Cs+ cations promoted the long-range crystalline order facilitating the crystallization of stable zeolite nanocrystals.
Collapse
Affiliation(s)
- Sajjad Ghojavand
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14000 Caen, France
| | - Edwin B Clatworthy
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14000 Caen, France
| | - Aurélie Vicente
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14000 Caen, France
| | - Eddy Dib
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14000 Caen, France
| | - Valérie Ruaux
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14000 Caen, France
| | - Maxime Debost
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14000 Caen, France; Normandie Université, ENSICAEN, UNICAEN, CNRS, CRISMAT, 14000 Caen, France
| | - Jaafar El Fallah
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14000 Caen, France
| | - Svetlana Mintova
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14000 Caen, France.
| |
Collapse
|