1
|
Zuo Y, Liu X, Fu E, Zhang S. A Pair of Interconverting Cages Formed from Achiral Precursors Spontaneously Resolve into Homochiral Conformers. Angew Chem Int Ed Engl 2023; 62:e202217225. [PMID: 36748582 DOI: 10.1002/anie.202217225] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023]
Abstract
Without chiral induction the emergence of homochirality from achiral molecules is rather serendipitous, as the rationale is somewhat ambiguous. We herein provide a plausible solution. From achiral precursors are formed a pair of interconverting cage conformers that exhibit a C3 -axis as the only symmetry element. When their interconversion is impeded with intramolecular H-bonding, each conformer self-sorts into a homochiral crystal, which is driven by a helical network of multivalent intermolecular interactions during the self-assembly of homochiral cage conformers. As no chiral induction is involved throughout, we believe our study could enlighten the rational design for the emergence of homochirality with several criteria: 1) formation of a molecule without inversion center or mirror plane; 2) suppression of the enantiomeric interconversion, and introduction of multivalent interactions along the helical trajectory of screw symmetry within the resulting superstructure.
Collapse
Affiliation(s)
- Yong Zuo
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoning Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Enguang Fu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
2
|
Chen C, Valera JS, Adachi TBM, Hermans TM. Efficient Photoredox Cycles to Control Perylenediimide Self-Assembly. Chemistry 2023; 29:e202202849. [PMID: 36112270 PMCID: PMC10098730 DOI: 10.1002/chem.202202849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Indexed: 01/04/2023]
Abstract
Photoreduction of perylenediimide (PDI) derivatives has been widely studied for use in photocatalysis, hydrogen evolution, photo-responsive gels, and organic semiconductors. Upon light irradiation, the radical anion (PDI⋅- ) can readily be obtained, whereas further reduction to the dianion (PDI2- ) is rare. Here we show that full 2-electron photoreduction can be achieved using UVC light: 1) in anaerobic conditions by 'direct photoreduction' of PDI aggregates, or 2) by 'indirect photoreduction' in aerobic conditions due to acetone ketyl radicals. The latter strategy is also efficient for other dyes, such as naphthalenediimide (NDI) and methylviologen (MV2+ ). Efficient photoreduction on the minute time-scale using simple LED light in aerobic conditions is attractive for use in dissipative light-driven systems and materials.
Collapse
Affiliation(s)
- Chunfeng Chen
- Université de Strasbourg, CNRS, UMR7140, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Jorge S Valera
- Université de Strasbourg, CNRS, UMR7140, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Takuji B M Adachi
- Department of Physical chemistry Sciences II, 30 Quai Ernest Ansermet, 1211, Genève 4, Switzerland
| | - Thomas M Hermans
- Université de Strasbourg, CNRS, UMR7140, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| |
Collapse
|
3
|
Xiang H, Valandro SR, Hill EH. Layered silicate edge-linked perylene diimides: Synthesis, self-assembly and energy transfer. J Colloid Interface Sci 2023; 629:300-306. [PMID: 36155925 DOI: 10.1016/j.jcis.2022.09.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/02/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
Abstract
The control over intermolecular interactions between chromophores at nanomaterial interfaces is important for sensing and light-harvesting applications. To that aim, inorganic nanoparticles with anisotropic shape and surface chemistry can serve as useful supports for organic modification. Herein, novel asymmetric perylene diimides with aspartic acid and oleyl terminal groups were grafted to the edges of the layered silicate clay Laponite, a water-dispersible discoidal nanoparticle. The photophysical properties and solvent-dependent self-assembly of the nanoclay-grafted perylenes were investigated, revealing that the polarity of the terminating ligand dictates the aggregation behavior in aqueous solution, where increased water content generally led to the formation of perylene H-aggregates. The anionic basal surface of the nanoclay provided a binding site for a cationic fluorophore, leading to energy transfer from the face-bound donor to the edge-bound perylene acceptor. This study encourages further research on the use of functional ligands for the formation of organic-inorganic hybrids, particularly where inorganic template particles with specific surface chemistry can be exploited to study intermolecular interactions. Overall, these findings should advance further design and implementation of novel semiconducting ligands towards inorganic-organic hybrids, with potential applications in sensing and energy harvesting.
Collapse
Affiliation(s)
- Hongxiao Xiang
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Silvano R Valandro
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; The Hamburg Center for Ultrafast Imaging (CUI), Luruper Chausee 149, 22761 Hamburg, Germany
| | - Eric H Hill
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; The Hamburg Center for Ultrafast Imaging (CUI), Luruper Chausee 149, 22761 Hamburg, Germany.
| |
Collapse
|
4
|
Bujosa S, Doncel‐Giménez A, Bäumer N, Fernández G, Ortí E, Costa A, Rotger C, Aragó J, Soberats B. Thermoreversible Polymorph Transitions in Supramolecular Polymers of Hydrogen-Bonded Squaramides. Angew Chem Int Ed Engl 2022; 61:e202213345. [PMID: 36178740 PMCID: PMC9828658 DOI: 10.1002/anie.202213345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Indexed: 01/12/2023]
Abstract
Hydrogen-bonded squaramide (SQ) supramolecular polymers exhibit uncommon thermoreversible polymorph transitions between particle- and fiber-like nanostructures. SQs 1-3, with different steric bulk, self-assemble in solution into particles (AggI) upon cooling to 298 K, and SQs 1 and 2, with only one dendronic group, show a reversible transformation into fibers (AggII) by further decreasing the temperature to 288 K. Nano-DSC and UV/Vis studies on SQ 1 reveal a concentration-dependent transition temperature and ΔH for the AggI-to-AggII conversion, while the kinetic studies on SQ 2 indicate the on-pathway nature of the polymorph transition. Spectroscopic and theoretical studies reveal that these transitions are triggered by the molecular reorganization of the SQ units changing from slipped to head-to-tail hydrogen bonding patterns. This work unveils the thermodynamic and kinetic aspects of reversible polymorph transitions that are of interest to develop stimuli-responsive systems.
Collapse
Affiliation(s)
- Sergi Bujosa
- Department of ChemistryUniversitat de les Illes BalearsCra. Valldemossa, Km. 7.507122Palma de MallorcaSpain
| | - Azahara Doncel‐Giménez
- Instituto de Ciencia Molecular (ICMol)Universidad de ValenciaC/Catedrático José Beltrán, 246980PaternaSpain
| | - Nils Bäumer
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 3648149MünsterGermany
| | - Gustavo Fernández
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 3648149MünsterGermany
| | - Enrique Ortí
- Instituto de Ciencia Molecular (ICMol)Universidad de ValenciaC/Catedrático José Beltrán, 246980PaternaSpain
| | - Antonio Costa
- Department of ChemistryUniversitat de les Illes BalearsCra. Valldemossa, Km. 7.507122Palma de MallorcaSpain
| | - Carmen Rotger
- Department of ChemistryUniversitat de les Illes BalearsCra. Valldemossa, Km. 7.507122Palma de MallorcaSpain
| | - Juan Aragó
- Instituto de Ciencia Molecular (ICMol)Universidad de ValenciaC/Catedrático José Beltrán, 246980PaternaSpain
| | - Bartolome Soberats
- Department of ChemistryUniversitat de les Illes BalearsCra. Valldemossa, Km. 7.507122Palma de MallorcaSpain
| |
Collapse
|
5
|
Li J, Li P, Fan M, Zheng X, Guan J, Yin M. Chirality of Perylene Diimides: Design Strategies and Applications. Angew Chem Int Ed Engl 2022; 61:e202202532. [DOI: 10.1002/anie.202202532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Li
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Pengyu Li
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Mingyu Fan
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xian Zheng
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Jun Guan
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
6
|
Patalag LJ, Hoche J, Mitric R, Werz DB, Feringa BL. Transforming Dyes into Fluorophores: Exciton-Induced Emission with Chain-like Oligo-BODIPY Superstructures. Angew Chem Int Ed Engl 2022; 61:e202116834. [PMID: 35244983 PMCID: PMC9310714 DOI: 10.1002/anie.202116834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/24/2022]
Abstract
Herein we present a systematic study demonstrating to which extent exciton formation can amplify fluorescence based on a series of ethylene-bridged oligo-BODIPYs. A set of non- and weakly fluorescent BODIPY motifs was selected and transformed into discrete, chain-like oligomers by linkage via a flexible ethylene tether. The prepared superstructures constitute excitonically active entities with non-conjugated, Coulomb-coupled oscillators. The non-radiative deactivation channels of Internal Conversion (IC), also combined with an upstream reductive Photoelectron Transfer (rPET) and Intersystem Crossing (ISC) were addressed at the monomeric state and the evolution of fluorescence and (non-)radiative decay rates studied along the oligomeric series. We demonstrate that a "masked" fluorescence can be fully reactivated irrespective of the imposed conformational rigidity. This work challenges the paradigm that a collective fluorescence enhancement is limited to sterically induced motional restrictions.
Collapse
Affiliation(s)
- Lukas J. Patalag
- University of GroningenStratingh Institute for ChemistryNijenborgh 49747 AGGroningenThe Netherlands
| | - Joscha Hoche
- Universität WürzburgInstitute of Physical and Theoretical ChemistryAm Hubland97074WürzburgGermany
| | - Roland Mitric
- Universität WürzburgInstitute of Physical and Theoretical ChemistryAm Hubland97074WürzburgGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Ben L. Feringa
- University of GroningenStratingh Institute for ChemistryNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
7
|
Datta S, Chaudhuri D. Reversible Supramolecular Polymorphism in Solution and Solid Matrix by Manipulating Sidegroup Conformation. Angew Chem Int Ed Engl 2022; 61:e202201956. [PMID: 35180328 DOI: 10.1002/anie.202201956] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Indexed: 12/28/2022]
Abstract
Reversible switching between supramolecular polymorphs offers a great way to introduce stimuli-responsiveness. Supramolecular polymorphism is usually achieved through pathway complexity, or by exploiting solvent-solute interactions. But, steering a self-assembly along a specific pathway to form a kinetically-stable aggregate is not easy. Also, changing solvent to switch between polymorphs is impractical. We present a perylene bisimide molecule with a trans-azobenzene sidegroup that assembles into three supramolecular polymorphs with distinct colors, morphologies, packing and aggregation mechanism. Optical absorption and FTIR spectroscopy reveal the importance of hydrogen-bonding interaction between protic solvent and azo N that controls the planarity of the azobenzene group and influences molecular packing. This interaction can be further modulated using temperature, and solution pH to reversibly switch between the three polymorphs, in solution as well as in solid silica-gel matrix.
Collapse
Affiliation(s)
- Saptarshi Datta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Debangshu Chaudhuri
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|
8
|
Li J, Li P, Fan M, Zheng X, Guan J, Yin M. Chirality of Perylene Diimides: Design Strategies and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Li
- Beijing University of Chemical Technology College of Materials Science and Engineering 100029 Beijing CHINA
| | - Pengyu Li
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Mingyu Fan
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Xian Zheng
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Jun Guan
- Tsinghua University Department of Chemistry CHINA
| | - Meizhen Yin
- Beijing University of Chemical Technology College of Materials Science and Engineering No. 15 Bei San Huan Dong Lu 100029 Beijing CHINA
| |
Collapse
|
9
|
Patalag LJ, Hoche J, Mitric R, Werz DB, Feringa BL. Transforming Dyes Into Fluorophores: Exciton‐Induced Emission with Chain‐like Oligo‐BODIPY Superstructures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas J. Patalag
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Joscha Hoche
- Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Institute of Physical and Theoretical Chemistry GERMANY
| | - Roland Mitric
- Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Institute of Theoretical and Physical Chemistry GERMANY
| | - Daniel B. Werz
- TU Braunschweig: Technische Universitat Braunschweig Institute for Organic Chemistry GERMANY
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|
10
|
Datta S, Chaudhuri D. Reversible Supramolecular Polymorphism in Solution and Solid Matrix by Manipulating Sidegroup Conformation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Saptarshi Datta
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Debangshu Chaudhuri
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| |
Collapse
|
11
|
Controlling the length of porphyrin supramolecular polymers via coupled equilibria and dilution-induced supramolecular polymerization. Nat Commun 2022; 13:248. [PMID: 35017511 PMCID: PMC8752679 DOI: 10.1038/s41467-021-27831-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Multi-component systems often display convoluted behavior, pathway complexity and coupled equilibria. In recent years, several ways to control complex systems by manipulating the subtle balances of interaction energies between the individual components have been explored and thereby shifting the equilibrium between different aggregate states. Here we show the enantioselective chain-capping and dilution-induced supramolecular polymerization with a Zn2+-porphyrin-based supramolecular system when going from long, highly cooperative supramolecular polymers to short, disordered aggregates by adding a monotopic Mn3+-porphyrin monomer. When mixing the zinc and manganese centered monomers, the Mn3+-porphyrins act as chain-cappers for Zn2+-porphyrin supramolecular polymers, effectively hindering growth of the copolymer and reducing the length. Upon dilution, the interaction between chain-capper and monomers weakens as the equilibria shift and long supramolecular polymers form again. This dynamic modulation of aggregate morphology and length is achieved through enantioselectivity in the aggregation pathways and concentration-sensitive equilibria. All-atom and coarse-grained molecular simulations provide further insights into the mixing of the species and their exchange dynamics. Our combined experimental and theoretical approach allows for precise control of molecular self-assembly and chiral discrimination in complex systems.
Collapse
|
12
|
Liu X, Shi Z, Xie M, Xu J, Zhou Z, Jung S, Cui G, Zuo Y, Li T, Yu C, Liu Z, Zhang S. Single‐Handed Double Helix and Spiral Platelet Formed by Racemate of Dissymmetric Cages. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoning Liu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zheng Shi
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Mingchen Xie
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jianping Xu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhifan Zhou
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Sinyeong Jung
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Guijia Cui
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yong Zuo
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Tao Li
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chunyang Yu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 China
| | - Shaodong Zhang
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
13
|
Liu X, Shi Z, Xie M, Xu J, Zhou Z, Jung S, Cui G, Zuo Y, Li T, Yu C, Liu Z, Zhang S. Single-Handed Double Helix and Spiral Platelet Formed by Racemate of Dissymmetric Cages. Angew Chem Int Ed Engl 2021; 60:15080-15086. [PMID: 33860594 DOI: 10.1002/anie.202103821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 11/09/2022]
Abstract
Spontaneous deracemization has been used to separate homochiral domains from the racemic system. However, homochirality can only be referred to when the scales of these domains and systems are specified. To clarify this, we report self-assembly of racemates of dissymmetric cages DC-1 with a cone-shape propeller geometry, forming a centrosymmetric columnar crystalline phase (racemic at crystallographic level). Owing to their anisotropic geometry, the two enantiomers are packed in a frustrated fashion in this crystalline phase; single-handed double helices are observed (single-handedness at supramolecular level). The frustrated packing (layer continuity break-up) in turn facilitates screw dislocation during the crystal growth, forming left- or right-handed spiral platelets (symmetry-breaking at morphological level), although each platelet is composed of DC-1 racemates. The symmetry correlation between DC-1 molecules, the crystalline phase and spiral platelets, all exhibit C3 symmetry.
Collapse
Affiliation(s)
- Xiaoning Liu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zheng Shi
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mingchen Xie
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianping Xu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhifan Zhou
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Sinyeong Jung
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guijia Cui
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yong Zuo
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tao Li
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chunyang Yu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shaodong Zhang
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
14
|
Shen CA, Bialas D, Hecht M, Stepanenko V, Sugiyasu K, Würthner F. Polymorphism in Squaraine Dye Aggregates by Self-Assembly Pathway Differentiation: Panchromatic Tubular Dye Nanorods versus J-Aggregate Nanosheets. Angew Chem Int Ed Engl 2021; 60:11949-11958. [PMID: 33751763 PMCID: PMC8252746 DOI: 10.1002/anie.202102183] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 12/21/2022]
Abstract
A bis(squaraine) dye equipped with alkyl and oligoethyleneglycol chains was synthesized by connecting two dicyanomethylene substituted squaraine dyes with a phenylene spacer unit. The aggregation behavior of this bis(squaraine) was investigated in non-polar toluene/tetrachloroethane (98:2) solvent mixture, which revealed competing cooperative self-assembly pathways into two supramolecular polymorphs with entirely different packing structures and UV/Vis/NIR absorption properties. The self-assembly pathway can be controlled by the cooling rate from a heated solution of the monomers. For both polymorphs, quasi-equilibrium conditions between monomers and the respective aggregates can be established to derive thermodynamic parameters and insights into the self-assembly mechanisms. AFM measurements revealed a nanosheet structure with a height of 2 nm for the thermodynamically more stable polymorph and a tubular nanorod structure with a helical pitch of 13 nm and a diameter of 5 nm for the kinetically favored polymorph. Together with wide angle X-ray scattering measurements, packing models were derived: the thermodynamic polymorph consists of brick-work type nanosheets that exhibit red-shifted absorption bands as typical for J-aggregates, while the nanorod polymorph consists of eight supramolecular polymer strands of the bis(squaraine) intertwined to form a chimney-type tubular structure. The absorption of this aggregate covers a large spectral range from 550 to 875 nm, which cannot be rationalized by the conventional exciton theory. By applying the Essential States Model and considering intermolecular charge transfer, the aggregate spectrum was adequately reproduced, revealing that the broad absorption spectrum is due to pronounced donor-acceptor overlap within the bis(squaraine) nanorods. The latter is also responsible for the pronounced bathochromic shift observed for the nanosheet structure as a result of the slip-stacked arranged squaraine chromophores.
Collapse
Affiliation(s)
- Chia-An Shen
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - David Bialas
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Markus Hecht
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Vladimir Stepanenko
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Kazunori Sugiyasu
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| |
Collapse
|
15
|
Shen C, Bialas D, Hecht M, Stepanenko V, Sugiyasu K, Würthner F. Polymorphism in Squaraine Dye Aggregates by Self‐Assembly Pathway Differentiation: Panchromatic Tubular Dye Nanorods versus J‐Aggregate Nanosheets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chia‐An Shen
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - David Bialas
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Markus Hecht
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Vladimir Stepanenko
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Kazunori Sugiyasu
- National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Frank Würthner
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|