1
|
Zhang Q, Hu C, Pang X, Chen X. Multi-Functional Organofluoride Catalysts for Polyesters Production and Upcycling Degradation. CHEMSUSCHEM 2024; 17:e202300907. [PMID: 37735092 DOI: 10.1002/cssc.202300907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/03/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
The production and degradation of polyesters are two crucial processes in polyester materials' life cycle. In this work, multi-functional organocatalysts based on fluorides for both processes are described. Organofluorides were developed as catalysts for ring-opening polymerization of lactide (lactone). Compared with a series of organohalides, organofluoride performed the best catalytic reactivity because of the hydrogen bond interaction between F- and alcohol initiator. The Mn values of polyester products could be up to 72 kg mol-1 . With organofluoride catalysts, the ring-opening copolymerization between various anhydrides and epoxides could be established. Furthermore, terpolymerization of anhydride, epoxide, and lactide could be constructed by the self-switchable organofluoride catalyst to yield a block polymer with a strictly controlled polymerization sequence. Organofluorides were also efficient catalysts for upcycling polyester plastic wastes via alcoholysis. Mixed polyester materials could also be hierarchically recycled.
Collapse
Affiliation(s)
- Qiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| |
Collapse
|
2
|
Wood ZA, Fieser ME. Understanding differences in rate versus product determining steps to enhance sequence control in epoxide/cyclic anhydride copolymers. Polym Chem 2023. [DOI: 10.1039/d3py00048f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
One-pot synthesis of random, gradient, and block polyesters via the ring opening copolymerization of epoxides and cyclic anhydrides is investigated using simple yttrium salt catalysts. Impact of rate versus product determining steps is discussed.
Collapse
Affiliation(s)
- Zachary A. Wood
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089, USA
| | - Megan E. Fieser
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089, USA
- Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, California, 90089, USA
| |
Collapse
|
3
|
Valle M, Ximenis M, Lopez de Pariza X, Chan JMW, Sardon H. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angew Chem Int Ed Engl 2022; 61:e202203043. [PMID: 35700152 PMCID: PMC9545893 DOI: 10.1002/anie.202203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Organocatalysis has evolved into an effective complement to metal- or enzyme-based catalysis in polymerization, polymer functionalization, and depolymerization. The ease of removal and greater sustainability of organocatalysts relative to transition-metal-based ones has spurred development in specialty applications, e.g., medical devices, drug delivery, optoelectronics. Despite this, the use of organocatalysis and other organomediated reactions in polymer chemistry is still rapidly developing, and we envisage their rapidly growing application in nascent areas such as controlled radical polymerization, additive manufacturing, and chemical recycling in the coming years. In this Review, we describe ten trending areas where we anticipate paradigm shifts resulting from novel organocatalysts and other transition-metal-free conditions. We highlight opportunities and challenges and detail how new discoveries could lead to previously inaccessible functional materials and a potentially circular plastics economy.
Collapse
Affiliation(s)
- María Valle
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| | - Marta Ximenis
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
- University of the Balearic Islands UIBDepartment of ChemistryCra. Valldemossa, Km 7.507122Palma de MallorcaSpain
| | - Xabier Lopez de Pariza
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| | - Julian M. W. Chan
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for ScienceTechnology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Singapore
| | - Haritz Sardon
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| |
Collapse
|
4
|
Wang J, Zhu Y, Li M, Wang Y, Wang X, Tao Y. Tug‐of‐War between Two Distinct Catalytic Sites Enables Fast and Selective Ring‐Opening Copolymerizations. Angew Chem Int Ed Engl 2022; 61:e202208525. [DOI: 10.1002/anie.202208525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jianqun Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Yinuo Zhu
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
| | - Yanchao Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
5
|
Wang J, Zhu Y, Li M, Wang Y, Wang X, Tao Y. Tug‐of‐war between Two Distinct Catalytic Sites Enables Fast and Selective Ring‐opening Copolymerizations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jianqun Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Key Laboratory of Polymer Ecomaterials CHINA
| | - Yinuo Zhu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Key Laboratory of Polymer Ecomaterials CHINA
| | - Maosheng Li
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Key Laboratory of Polymer Ecomaterials CHINA
| | - Yanchao Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Key Laboratory of Polymer Ecomaterials CHINA
| | - Xianhong Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Key Laboratory of Polymer Ecomaterials CHINA
| | - Youhua Tao
- Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Key Laboratory of Polymer Ecomaterials 5625 Renmin StreetChangchun中国 130022 Changchun CHINA
| |
Collapse
|
6
|
Sardon H, Valle M, Lopez de Pariza X, Ximenis M, Chan JM. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haritz Sardon
- University of Basque Country POLYMAT Paseo Manuel Lardizabal n 3 20018 San Sebastian SPAIN
| | - María Valle
- University of the Basque Country: Universidad del Pais Vasco POLYMAT SPAIN
| | | | - Marta Ximenis
- University of the Basque Country: Universidad del Pais Vasco POLYMAT SPAIN
| | - Julian M.W. Chan
- Agency for Science Technology and Research Institue of Chemical and Engineering Science SINGAPORE
| |
Collapse
|
7
|
Petersen SR, Prydderch H, Worch JC, Stubbs CJ, Wang Z, Yu J, Arno MC, Dobrynin AV, Becker ML, Dove AP. Ultra-Tough Elastomers from Stereochemistry-Directed Hydrogen Bonding in Isosorbide-Based Polymers. Angew Chem Int Ed Engl 2022; 61:e202115904. [PMID: 35167725 PMCID: PMC9311410 DOI: 10.1002/anie.202115904] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 02/02/2023]
Abstract
The remarkable elasticity and tensile strength found in natural elastomers are challenging to mimic. Synthetic elastomers typically feature covalently cross-linked networks (rubbers), but this hinders their reprocessability. Physical cross-linking via hydrogen bonding or ordered crystallite domains can afford reprocessable elastomers, but often at the cost of performance. Herein, we report the synthesis of ultra-tough, reprocessable elastomers based on linear alternating polymers. The incorporation of a rigid isohexide adjacent to urethane moieties affords elastomers with exceptional strain hardening, strain rate dependent behavior, and high optical clarity. Distinct differences were observed between isomannide and isosorbide-based elastomers where the latter displays superior tensile strength and strain recovery. These phenomena are attributed to the regiochemical irregularities in the polymers arising from their distinct stereochemistry and respective inter-chain hydrogen bonding.
Collapse
Affiliation(s)
| | | | - Joshua C. Worch
- School of ChemistryUniversity of BirminghamBirminghamB15 2TTUK
| | | | - Zilu Wang
- Department of ChemistryUniversity of North Carolina Chapel HillChapel HillNC, 27599USA
| | - Jiayi Yu
- Department of Polymer ScienceThe University of AkronAkronOH 44224USA
| | - Maria C. Arno
- School of ChemistryUniversity of BirminghamBirminghamB15 2TTUK
| | - Andrey V. Dobrynin
- Department of ChemistryUniversity of North Carolina Chapel HillChapel HillNC, 27599USA
| | - Matthew L. Becker
- Department of Chemistry, Mechanical Engineering and Materials ScienceBiomedical Engineering and Orthopedic SurgeryDuke UniversityDurhamNC, 20899USA
| | - Andrew P. Dove
- School of ChemistryUniversity of BirminghamBirminghamB15 2TTUK
| |
Collapse
|
8
|
Zhang X, Zhang C, Zhang X. A Facile and Unprecedented Route to a Library of Thermostable Formaldehyde‐Derived Polyesters: Highly Active and Selective Copolymerization of Cyclic Acetals and Anhydrides. Angew Chem Int Ed Engl 2022; 61:e202117316. [DOI: 10.1002/anie.202117316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Xun Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization International Research Center for X Polymers Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Chengjian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization International Research Center for X Polymers Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xinghong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization International Research Center for X Polymers Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
9
|
Rittinghaus RD, Zenner J, Pich A, Kol M, Herres‐Pawlis S. Master of Chaos and Order: Opposite Microstructures of PCL-co-PGA-co-PLA Accessible by a Single Catalyst. Angew Chem Int Ed Engl 2022; 61:e202112853. [PMID: 34984790 PMCID: PMC9305917 DOI: 10.1002/anie.202112853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 12/27/2022]
Abstract
One catalyst, two reaction set-ups, three monomers and unlimited macromolecular microstructural designs: The iron guanidine complex [FeCl2 (TMG5NMe2 asme)] (1) polymerizes lactide faster than the industrially used Sn(Oct)2 and shows high activity towards glycolide and ϵ-caprolactone. Its distinguished features enable the synthesis of both block and random-like copolymers in the melt by a simple change of the polymerization set-up. Sequential addition of monomers yields highly ordered block copolymers including the symmetrical PLA-b-PGA-b-PCL-b-PGA-b-PLA pentablock copolymers, while polymerizations of monomer mixtures feature enhanced transesterifications and pave the way to di- and terpolymers with highly dispersed repeating unit distributions. A robust catalyst active under industrially applicable conditions and producing copolymers with desired microstructures is a major step towards biocompatible polymers with tailor-made properties as alternatives for traditional plastics on the way towards a sustainable, circular material flow.
Collapse
Affiliation(s)
- Ruth D. Rittinghaus
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Johannes Zenner
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Andrij Pich
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Moshe Kol
- The School of ChemistryTel Aviv UniversityRamat-Aviv, Tel-Aviv6997801Israel
| | - Sonja Herres‐Pawlis
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
10
|
Reis NV, Deacy AC, Rosetto G, Durr CB, Williams CK. Heterodinuclear Mg(II)M(II) (M=Cr, Mn, Fe, Co, Ni, Cu and Zn) Complexes for the Ring Opening Copolymerization of Carbon Dioxide/Epoxide and Anhydride/Epoxide. Chemistry 2022; 28:e202104198. [PMID: 35114048 PMCID: PMC9306976 DOI: 10.1002/chem.202104198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 11/07/2022]
Abstract
The catalysed ring opening copolymerizations (ROCOP) of carbon dioxide/epoxide or anhydride/epoxide are controlled polymerizations that access useful polycarbonates and polyesters. Here, a systematic investigation of a series of heterodinuclear Mg(II)M(II) complexes reveals which metal combinations are most effective. The complexes combine different first row transition metals (M(II)) from Cr(II) to Zn(II), with Mg(II); all complexes are coordinated by the same macrocyclic ancillary ligand and by two acetate co-ligands. The complex syntheses and characterization data, as well as the polymerization data, for both carbon dioxide/cyclohexene oxide (CHO) and endo-norbornene anhydride (NA)/cyclohexene oxide, are reported. The fastest catalyst for both polymerizations is Mg(II)Co(II) which shows propagation rate constants (kp ) of 34.7 mM-1 s-1 (CO2 ) and 75.3 mM-1 s-1 (NA) (100 °C). The Mg(II)Fe(II) catalyst also shows excellent performances with equivalent rates for CO2 /CHO ROCOP (kp =34.7 mM-1 s-1 ) and may be preferable in terms of metallic abundance, low cost and low toxicity. Polymerization kinetics analyses reveal that the two lead catalysts show overall second order rate laws, with zeroth order dependencies in CO2 or anhydride concentrations and first order dependencies in both catalyst and epoxide concentrations. Compared to the homodinuclear Mg(II)Mg(II) complex, nearly all the transition metal heterodinuclear complexes show synergic rate enhancements whilst maintaining high selectivity and polymerization control. These findings are relevant to the future design and optimization of copolymerization catalysts and should stimulate broader investigations of synergic heterodinuclear main group/transition metal catalysts.
Collapse
Affiliation(s)
- Natalia V Reis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Arron C Deacy
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Gloria Rosetto
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Christopher B Durr
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Charlotte K Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| |
Collapse
|
11
|
Petersen SR, Prydderch H, Worch JC, Stubbs CJ, Wang Z, Yu J, Arno MC, Dobrynin AV, Becker ML, Dove AP. Ultra‐Tough Elastomers from Stereochemistry‐Directed Hydrogen Bonding in Isosorbide‐Based Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Hannah Prydderch
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| | - Joshua C. Worch
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| | - Connor J. Stubbs
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| | - Zilu Wang
- Department of Chemistry University of North Carolina Chapel Hill Chapel Hill NC, 27599 USA
| | - Jiayi Yu
- Department of Polymer Science The University of Akron Akron OH 44224 USA
| | - Maria C. Arno
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| | - Andrey V. Dobrynin
- Department of Chemistry University of North Carolina Chapel Hill Chapel Hill NC, 27599 USA
| | - Matthew L. Becker
- Department of Chemistry, Mechanical Engineering and Materials Science Biomedical Engineering and Orthopedic Surgery Duke University Durham NC, 20899 USA
| | - Andrew P. Dove
- School of Chemistry University of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
12
|
Rittinghaus RD, Zenner J, Pich A, Kol M, Herres‐Pawlis S. Kontrolle über Chaos und Ordnung: Gegensätzliche Mikrostrukturen von PCL‐
co
‐PGA‐
co
‐PLA durch einen einzigen Katalysator zugänglich**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ruth D. Rittinghaus
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Johannes Zenner
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Andrij Pich
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringerweg 2 52074 Aachen Deutschland
| | - Moshe Kol
- The School of Chemistry Tel Aviv University Ramat-Aviv, Tel-Aviv 6997801 Israel
| | - Sonja Herres‐Pawlis
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
13
|
Zhang X, Zhang C, Zhang X. A Facile and Unprecedented Route to a Library of Thermostable Formaldehyde‐derived Polyesters: Highly Active and Selective Copolymerization of Cyclic Acetals and Anhydrides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xun Zhang
- Zhejiang University Department of Polymer Science and Engineering CHINA
| | - Chengjian Zhang
- Zhejiang University Department of Polymer Science and Engineering Zheda Road 56#310027Hangzhou Yes CHINA
| | - Xinghong Zhang
- Zhejiang University Department of Polymer Science and Engineering Zheda Road 38 310027 Hangzhou CHINA
| |
Collapse
|
14
|
Plajer AJ, Williams CK. Heterocycle/Heteroallene Ring-Opening Copolymerization: Selective Catalysis Delivering Alternating Copolymers. Angew Chem Int Ed Engl 2022; 61:e202104495. [PMID: 34015162 PMCID: PMC9298364 DOI: 10.1002/anie.202104495] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 11/29/2022]
Abstract
Heteroatom-containing polymers have strong potential as sustainable replacements for petrochemicals, show controllable monomer-polymer equilibria and properties spanning plastics, elastomers, fibres, resins, foams, coatings, adhesives, and self-assembled nanostructures. Their current and future applications span packaging, house-hold goods, clothing, automotive components, electronics, optical materials, sensors, and medical products. An interesting route to these polymers is the catalysed ring-opening copolymerisation (ROCOP) of heterocycles and heteroallenes. It is a living polymerization, occurs with high atom economy, and creates precise, new polymer structures inaccessible by traditional methods. In the last decade there has been a renaissance in research and increasing examples of commercial products made using ROCOP. It is better known in the production of polycarbonates and polyesters, but is also a powerful route to make N-, S-, and other heteroatom-containing polymers, including polyamides, polycarbamates, and polythioesters. This Review presents an overview of the different catalysts, monomer combinations, and polymer classes that can be accessed by heterocycle/heteroallene ROCOP.
Collapse
Affiliation(s)
- Alex J. Plajer
- Oxford ChemistryChemical Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | | |
Collapse
|
15
|
Plajer AJ, Williams CK. Heterocycle/Heteroallene Ring‐Opening Copolymerization: Selective Catalysis Delivering Alternating Copolymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alex J. Plajer
- Oxford Chemistry Chemical Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | | |
Collapse
|
16
|
Lindeboom W, Fraser DAX, Durr CB, Williams CK. Heterodinuclear Zn(II), Mg(II) or Co(III) with Na(I) Catalysts for Carbon Dioxide and Cyclohexene Oxide Ring Opening Copolymerizations. Chemistry 2021; 27:12224-12231. [PMID: 34133043 PMCID: PMC8456860 DOI: 10.1002/chem.202101140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 12/16/2022]
Abstract
A series heterodinuclear catalysts, operating without co-catalyst, show good performances for the ring opening copolymerization (ROCOP) of cyclohexene oxide and carbon dioxide. The complexes feature a macrocyclic ligand designed to coordinate metals such as Zn(II), Mg(II) or Co(III), in a Schiff base 'pocket', and Na(I) in a modified crown-ether binding 'pocket'. The 11 new catalysts are used to explore the influences of the metal combinations and ligand backbones over catalytic activity and selectivity. The highest performance catalyst features the Co(III)Na(I) combination, [N,N'-bis(3,3'-triethylene glycol salicylidene)-1,2-ethylenediamino cobalt(III) di(acetate)]sodium (7), and it shows both excellent activity and selectivity at 1 bar carbon dioxide pressure (TOF=1590 h-1 , >99 % polymer selectivity, 1 : 10: 4000, 100 °C), as well as high activity at higher carbon dioxide pressure (TOF=4343 h-1 , 20 bar, 1 : 10 : 25000). Its rate law shows a first order dependence on both catalyst and cyclohexene oxide concentrations and a zeroth order for carbon dioxide pressure, over the range 10-40 bar. These new catalysts eliminate any need for ionic or Lewis base co-catalyst and instead exploit the coordination of earth-abundant and inexpensive Na(I) adjacent to a second metal to deliver efficient catalysis. They highlight the potential for well-designed ancillary ligands and inexpensive Group 1 metals to deliver high performance heterodinuclear catalysts for carbon dioxide copolymerizations and, in future, these catalysts may also show promise in other alternating copolymerization and carbon dioxide utilizations.
Collapse
Affiliation(s)
- Wouter Lindeboom
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordUK
| | - Duncan A. X. Fraser
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordUK
| | - Christopher B. Durr
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordUK
| | | |
Collapse
|