1
|
Bai D, Qiu J, Li J, Zhou S, Cui X, Tang X, Tang Y, Liu W, Chen B. Mesoporous Mixed-Metal-Organic Framework Incorporating a [Ru(Phen) 3] 2+ Photosensitizer for Highly Efficient Aerobic Photocatalytic Oxidative Coupling of Amines. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37312235 DOI: 10.1021/acsami.3c05397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
[Ru(Phen)3]2+ (phen = phenanthroline) as a very classical photosensitizer possesses strong absorption in the visible range and facilitates photoinduced electron transfer, which plays a vital role in regulating photochemical reactions. However, it remains a significant challenge to utilize more adequately and exploit more efficiently the ruthenium-based materials due to the uniqueness, scarcity, and nonrenewal of the noble metal. Here, we integrate the intrinsic advantages of the ruthenium-based photosensitizer and mesoporous metal-organic frameworks (meso-MOFs) into a [Ru(Phen)3]2+ photosensitizer-embedded heterometallic Ni(II)/Ru(II) meso-MOF (LTG-NiRu) via the metalloligand approach. LTG-NiRu, with an extremely robust framework and a large one-dimensional (1D) channel, not only makes ruthenium photosensitizer units anchored in the inner wall of meso-MOF tubes to circumvent the problem of product/catalyst separation and recycling of catalysts in heterogeneous systems but also exhibits exceptional activities for the aerobic photocatalytic oxidative coupling of amine derivatives as a general photocatalyst. The conversion of the light-induced oxidative coupling reaction for various benzylamines is ∼100% in 1 h, and more than 20 chemical products generated by photocatalytic oxidative cycloaddition of N-substituted maleimides and N,N-dimethylaniline can be synthesized easily in the presence of LTG-NiRu upon visible light irradiation. Moreover, recycling experiments demonstrate that LTG-NiRu is an excellent heterogeneous photocatalyst with high stability and excellent reusability. LTG-NiRu represents a great potential photosensitizer-based meso-MOF platform with an efficient aerobic photocatalytic oxidation function that is convenient for gram-scale synthesis.
Collapse
Affiliation(s)
- Dongjie Bai
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jinlin Qiu
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jingzhe Li
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shengbin Zhou
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiang Cui
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
| | - Xiaoliang Tang
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
| | - Yu Tang
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Liu
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
2
|
Chen C, Xiong Y, Zhong X, Lan PC, Wei Z, Pan H, Su P, Song Y, Chen Y, Nafady A, Sirajuddin, Ma S. Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Ti‐MOF/COF Composites. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cheng‐Xia Chen
- Department of Chemistry University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| | - Yang‐Yang Xiong
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Xin Zhong
- School of Chemical Engineering and Technology Hainan University Haikou 570228 China
| | - Pui Ching Lan
- Department of Chemistry University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| | - Zhang‐Wen Wei
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Hongjun Pan
- Department of Chemistry University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| | - Pei‐Yang Su
- Institute of Environmental Research at Greater Bay Area Guangzhou University Guangzhou 510006 China
| | - Yujie Song
- School of Chemical Engineering and Technology Hainan University Haikou 570228 China
| | - Yi‐Fan Chen
- School of Chemical Engineering and Technology Hainan University Haikou 570228 China
| | - Ayman Nafady
- Department of Chemistry College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Sirajuddin
- HEJ Research Institute of Chemistry International Centre for Chemical and Biological Sciences University of Karachi 75270 Karachi Pakistan
| | - Shengqian Ma
- Department of Chemistry University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| |
Collapse
|
3
|
Chen CX, Xiong YY, Zhong X, Lan PC, Wei ZW, Pan H, Su PY, Song Y, Chen YF, Nafady A, Uddin S, Ma S. Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Ti-MOF/COF Composite. Angew Chem Int Ed Engl 2021; 61:e202114071. [PMID: 34780112 DOI: 10.1002/anie.202114071] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/12/2021] [Indexed: 02/05/2023]
Abstract
Titanium metal-organic frameworks (Ti-MOFs), as an appealing type of artificial photocatalysts, have shown great potentials in the field of solar energy conversion due to their well-studied photo-redox activity similar to TiO 2 and good optical responsiveness of linkers serving as the antenna to absorb visible-light. Although enormous efforts have been dedicated to developing Ti-MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, a covalent-integrated strategy has been implemented to construct a series of multivariate Ti-MOF/COF hybrid materials, PdTCPP⸦PCN-415(NH 2 )/TpPa (composites 1, 2, and 3), featuring excellent visible-light utilization, suitable band gap, and high surface area for photocatalytic H 2 production. Notably, the resulting composites demonstrated remarkably enhanced visible-light-driven photocatalytic H 2 evolution performance, especially for the composite 2 with the maximum H 2 evolution rate of 13.98 mmol g -1 h -1 (turn-over frequency (TOF) = 227 h -1 ), which is much higher than the prototypical counterparts, PdTCPP⸦PCN-415(NH 2 ) (0.21 mmol g -1 h -1 ) and TpPa (6.51 mmol g -1 h -1 ). Our work thereby suggests a new approach to develop highly efficient photocatalysts for photocatalytic H 2 evolution reaction and beyond.
Collapse
Affiliation(s)
- Cheng-Xia Chen
- University of North Texas, Department of Chemistry, UNITED STATES
| | | | - Xin Zhong
- Hainan University, School of Chemical Engineering and Technology, CHINA
| | - Pui Ching Lan
- University of North Texas, Department of Chemistry, UNITED STATES
| | | | - Hongjun Pan
- University of North Texas, Department of Chemistry, UNITED STATES
| | - Pei-Yang Su
- Guangzhou University, Institute of Environmental Research at Great Bay Area, CHINA
| | - Yujie Song
- Hainan University, School of Chemical Engineering and Technology, CHINA
| | - Yi-Fan Chen
- Hainan University, School of Chemical engineering and technology, CHINA
| | - Ayman Nafady
- King Saud University, Chemistry Department, SAUDI ARABIA
| | - Siraj Uddin
- University of Karachi, Institute of Chemistry, PAKISTAN
| | - Shengqian Ma
- University of North Texas, Department of Chemistry, 1508 W Mulberry St, 76201, Denton, UNITED STATES
| |
Collapse
|
4
|
Xiao Y, Gong X, Zhang J. Self-Foaming Metal-Organic Gels Based on Phytic Acid and Their Mechanical, Moldable, and Load-Bearing Properties. Chemistry 2021; 27:8791-8798. [PMID: 33830549 DOI: 10.1002/chem.202100476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Indexed: 12/30/2022]
Abstract
A catalogue of metal-organic gels are synthesized from phytic acid (PA) and a diversity of metal ions (Fe3+ , Cr3+ , Al3+ , Ce3+ , Y3+ , Co2+ , Ni2+ , Mn2+ , Cu2+ , Zn2+ , Mg2+ ) upon heating at 80 °C. PA-M gels have various morphologies, including irregular granular (PA-Fe, PA-Al, PA-Ce, PA-Cr, PA-Ni, PA-Co), spongy (PA-Y), and hollow tremella-like (PA-Cu) morphologies. Interestingly for PA-Fe-1 : 4 (PA:Fe3+ =1 : 4) a large amount of gas is generated during the gelation process leading to a self-foaming gel. The PA-Fe-1 : 4 self-foaming gel shows reversible gel-sol phase transition. The gel is unusually weakened and transformed into a sol at room temperature, and the sol is reversed to gelation when heated again at 80 °C. PA-Fe-1 : 4 gel also shows shapeable and load-bearing properties, and it can bear up to 200 times of its weight, depending on the gas amount fixed in the foam gel and the aging time. This work provides a catalogue of self-foaming supramolecular gels with tunable properties based on naturally abundant resources.
Collapse
Affiliation(s)
- Yali Xiao
- MOE Laboratory of Polymeric Composite and Functional Materials School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xi Gong
- MOE Laboratory of Polymeric Composite and Functional Materials School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianyong Zhang
- MOE Laboratory of Polymeric Composite and Functional Materials School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|