1
|
Liu Y, Cheng Y, Zhu S, Wei Z, Zhang C, Song S, Cui X, Chen YN, Zhang A, Liu Y, Lu H, Hu H, Bo Z. Constructing efficient organic solar cells by highly volatile solid additives with controlled phase morphology. Chem Commun (Camb) 2024; 60:13424-13427. [PMID: 39469778 DOI: 10.1039/d4cc04675g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We synthesized two highly volatile and low-cost solid additives, PT and TFT. The inclusion of PT and TFT effectively influences the aggregation behavior of D18: L8-BO during the film-forming process. Consequently, PT and TFT-treated D18: L8-BO-based OSCs achieved power conversion efficiencies of 18.28% and 19.19%, respectively. This study provides a straightforward approach for achieving efficient photovoltaic performance of OSCs.
Collapse
Affiliation(s)
- Yueheng Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Yetai Cheng
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Shenbo Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Zhengdong Wei
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Chenyi Zhang
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Shuyue Song
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Xinyue Cui
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Ya-Nan Chen
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Andong Zhang
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Yahui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Hao Lu
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Zhishan Bo
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Lin C, Peng R, Shi J, Ge Z. Research progress and application of high efficiency organic solar cells based on benzodithiophene donor materials. EXPLORATION (BEIJING, CHINA) 2024; 4:20230122. [PMID: 39175891 PMCID: PMC11335474 DOI: 10.1002/exp.20230122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/07/2024] [Indexed: 08/24/2024]
Abstract
In recent decades, the demand for clean and renewable energy has grown increasingly urgent due to the irreversible alteration of the global climate change. As a result, organic solar cells (OSCs) have emerged as a promising alternative to address this issue. In this review, we summarize the recent progress in the molecular design strategies of benzodithiophene (BDT)-based polymer and small molecule donor materials since their birth, focusing on the development of main-chain engineering, side-chain engineering and other unique molecular design paths. Up to now, the state-of-the-art power conversion efficiency (PCE) of binary OSCs prepared by BDT-based donor materials has approached 20%. This work discusses the potential relationship between the molecular changes of donor materials and photoelectric performance in corresponding OSC devices in detail, thereby presenting a rational molecular design guidance for stable and efficient donor materials in future.
Collapse
Affiliation(s)
- Congqi Lin
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
- Faculty of Materials and Chemical EngineeringNingbo UniversityNingboPeople's Republic of China
| | - Ruixiang Peng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| | - Jingyu Shi
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| |
Collapse
|
3
|
De R, Bera A, Schmidt H, Neumann C, Paa W, Gawlik A, Turchanin A, Dietzek-Ivanšić B. Studying Molecular Rearrangement of P1 Dye at a Passivating Alumina Surface Using Vibrational Sum-Frequency Generation Spectroscopy: Effect of Atomic-Level Roughness. Chemphyschem 2023; 24:e202300203. [PMID: 37415441 DOI: 10.1002/cphc.202300203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
The effect of roughness and thickness of alumina layers, mimicking the passivation layer commonly used in dye-sensitized photoelectrodes, on the molecular adsorption of P1 dye, 4-(bi(4-(2,2-dicyano-vinyl)-thiophene-2-yl]-phenyl]-aminobenzoic acid) has been studied using surface-sensitive vibrational sum frequency generation(VSFG) spectroscopy. The VSFG spectra reveal the formation of poorly ordered dye layers on relatively rough surfaces where XPS measures a higher dye loading. Furthermore, these poorly ordered dye molecules are responsible for the generation of trapped electronic states as probed by successive photoluminescence (PL) measurements. Surface sensitive VSFG spectroscopy in combination with XPS and PL measurements provide complementary spectral information on ordering of the adsorbed dyes, their density on the surface and electronic states of the adsorbed monolayer which are prerequisite for improving our understanding of molecularly functionalized photoelectrodes and their further development.
Collapse
Affiliation(s)
- Ratnadip De
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Strasse 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Anupam Bera
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Strasse 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Heiner Schmidt
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Strasse 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Christof Neumann
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Wolfgang Paa
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Annett Gawlik
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Andrey Turchanin
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Strasse 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
4
|
Bin H, Li J, Caiazzo A, Wienk MM, Li Y, Janssen RAJ. Preparation of Efficient Organic Solar Cells Based on Terpolymer Donors via a Monomer-Ratio Insensitive Side-Chain Hybridization Strategy. CHEMSUSCHEM 2023; 16:e202300006. [PMID: 36601966 DOI: 10.1002/cssc.202300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Creating new donor materials is crucial for further advancing organic solar cells. Random terpolymers have been adopted to overcome shortcomings of regular alternating donor-acceptor (D-A) polymers of which the performance is often susceptible to batch-to-batch variations. In general, the properties and performance of efficient D1 -A-D2 -A and D-A1 -D-A2 terpolymers are sensitive to the D1 /D2 or A1 /A2 monomer ratios. Side-chain hybridization is a strategy to address this problem. Here, six D1 -A-D2 -A-type random terpolymers comprising D1 and D2 monomers with the same π-conjugated D unit but with different side chains were synthesized. The side chains, containing either fluorine or trialkylsilyl substituents were chosen to provide near-identical optoelectronic properties but provide a tool to create a better-optimized film morphology when blended with a non-fullerene acceptor. This strategy allows improving the device performance to over 18 %, higher than that obtained with the corresponding D1 -A or D2 -A bipolymers (around 17 %). Hence, side-chain hybridization is a promising strategy to design efficient D1 -A-D2 -A terpolymer donors that are insensitive to the D1 /D2 monomer ratio, which is beneficial for the scaled-up synthesis of high-performance materials.
Collapse
Affiliation(s)
- Haijun Bin
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, P. R China
- Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB (The, Netherlands
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Junyu Li
- Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB (The, Netherlands
| | - Alessandro Caiazzo
- Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB (The, Netherlands
| | - Martijn M Wienk
- Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB (The, Netherlands
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, P. R China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - René A J Janssen
- Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB (The, Netherlands
- Dutch Institute for Fundamental Energy Research, Eindhoven, 5612 AJ (The, Netherlands
| |
Collapse
|
5
|
Zhao X, An Q, Zhang H, Yang C, Mahmood A, Jiang M, Jee MH, Fu B, Tian S, Woo HY, Wang Y, Wang JL. Double Asymmetric Core Optimizes Crystal Packing to Enable Selenophene-based Acceptor with Over 18 % Efficiency in Binary Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202216340. [PMID: 36591914 DOI: 10.1002/anie.202216340] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Side-chain tailoring is a promising method to optimize the performance of organic solar cells (OSCs). However, asymmetric alkyl chain-based small molecular acceptors (SMAs) are still difficult to afford. Herein, we adopted a novel asymmetric n-nonyl/undecyl substitution strategy and synthesized two A-D1 A'D2 -A double asymmetric isomeric SMAs with asymmetric selenophene-based central core for OSCs. Crystallographic analysis indicates that AYT9Se11-Cl forms a more compact and order intermolecular packing compared to AYT11Se9-Cl, which contributed to higher electron mobility in neat AYT9Se11-Cl film. Moreover, the PM6 : AYT9Se11-Cl blend film shows a better morphology with appropriate phase separation and distinct face-on orientation than PM6 : AYT11Se9-Cl. The OSCs with PM6 : AYT9Se11-Cl obtain a superior PCE of 18.12 % compared to PM6 : AYT11Se9-Cl (17.52 %), which is the best efficiency for the selenium-incorporated SMAs in binary BHJ OSCs. Our findings elucidate that the promising double asymmetric strategy with isomeric alkyl chains precisely modulates the crystal packing and enhances the photovoltaic efficiency of selenophene-incorporated SMAs.
Collapse
Affiliation(s)
- Xin Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Heng Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Can Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Asif Mahmood
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengyun Jiang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Min Hun Jee
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Bin Fu
- Department of Chemistry, Renmin University of China, 100872, Beijing, China
| | - Shiyu Tian
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Yapei Wang
- Department of Chemistry, Renmin University of China, 100872, Beijing, China
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
6
|
Liu W, Sun S, Zhou L, Cui Y, Zhang W, Hou J, Liu F, Xu S, Zhu X. Design of Near‐Infrared Nonfullerene Acceptor with Ultralow Nonradiative Voltage Loss for High‐Performance Semitransparent Ternary Organic Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wuyue Liu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shaoming Sun
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Liang Zhou
- Department of Physics and Applied Optics Beijing Area Major Laboratory Center for Advanced Quantum Studies Beijing Normal University Beijing 100875 P. R. China
| | - Yong Cui
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory Center for Advanced Quantum Studies Beijing Normal University Beijing 100875 P. R. China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 P. R. China
| | - Shengjie Xu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
7
|
Liu W, Sun S, Zhou L, Cui Y, Zhang W, Hou J, Liu F, Xu S, Zhu X. Design of Near-Infrared Nonfullerene Acceptor with Ultralow Nonradiative Voltage Loss for High-Performance Semitransparent Ternary Organic Solar Cells. Angew Chem Int Ed Engl 2021; 61:e202116111. [PMID: 34962046 DOI: 10.1002/anie.202116111] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 11/12/2022]
Abstract
Semitransparent organic solar cells (ST-OSCs) are considered as one of the most valuable applications of OSCs and a strong contender in the market. However, the optical bandgap of current high-performance ST-OSCs is still not low enough to achieve the optimal balance between power conversion efficiency (PCE) and average visible transmittance (AVT). An N- substituted asymmetric nonfullerene acceptor SN with over 40 nm bathochromically shifted absorption compared to Y6 was designed and synthesized, based on which the device with PM6 as donor obtained a PCE of 14.3%, accompanied with a nonradiative voltage loss as low as 0.15 eV. Meanwhile, ternary devices with the addition of SN into PM6:Y6 can achieve a PCE of 17.5% with an unchanged open-circuit voltage and improved short-circuit current. Benefiting from extended NIR absorption and lowered voltage loss, ST-OSCs based on PM6:SN:Y6 were fabricated and the optimized device demonstrated a PCE of 14.0% at an AVT of 20.2%, which is the highest PCE at an AVT over 20%.
Collapse
Affiliation(s)
- Wuyue Liu
- Institute of Chemistry Chinese Academy of Sciences, CAS Key Laboratory of Organic Solids, CHINA
| | - Shaoming Sun
- Institute of Chemistry Chinese Academy of Sciences, CAS Key Laboratory of Organic Solids, CHINA
| | - Liang Zhou
- Beijing Normal University, Department of Physics, CHINA
| | - Yong Cui
- Institute of Chemistry Chinese Academy of Sciences, State Key Laboratory of Polymer Physics and Chemistry, CHINA
| | - Wenkai Zhang
- Beijing Normal University, Department of Physics, CHINA
| | - Jianhui Hou
- Institute of Chemistry Chinese Academy of Sciences, State Key Laboratory of Polymer Physics and Chemistry, CHINA
| | - Feng Liu
- Shanxi University, School of Chemistry and Chemical Engineering, CHINA
| | - Shengjie Xu
- Institute of Chemistry Chinese Academy of Sciences, CAS Key Laboratory of Organic Solids, CHINA
| | - Xiaozhang Zhu
- Institute of Chemistry Chinese Academy of Sciences, Key Laboratory of Organic Solids, Zhongguancun North First Street 2, Haidi, 100190, Beijing, CHINA
| |
Collapse
|
8
|
Su W, Wang Y, Yin Z, Fan Q, Guo X, Yu L, Li Y, Hou L, Zhang M, Peng Q, Li Y, Wang E. 13.4 % Efficiency from All-Small-Molecule Organic Solar Cells Based on a Crystalline Donor with Chlorine and Trialkylsilyl Substitutions. CHEMSUSCHEM 2021; 14:3535-3543. [PMID: 34057293 PMCID: PMC8518815 DOI: 10.1002/cssc.202100860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Indexed: 05/29/2023]
Abstract
How to simultaneously achieve both high open-circuit voltage (Voc ) and high short-circuit current density (Jsc ) is a big challenge for realising high power conversion efficiency (PCE) in all-small-molecule organic solar cells (all-SM OSCs). Herein, a novel small molecule (SM)-donor, namely FYSM-SiCl, with trialkylsilyl and chlorine substitutions was designed and synthesized. Compared to the original SM-donor FYSM-H, FYSM-Si with trialkylsilyl substitution showed a decreased crystallinity and lower highest occupied molecular orbital (HOMO) level, while FYSM-SiCl had an improved crystallinity, more ordered packing arrangement, significantly lower HOMO level, and predominant "face-on" orientation. Matched with a SM-acceptor Y6, the FYSM-SiCl-based all-SM OSCs exhibited both high Voc of 0.85 V and high Jsc of 23.7 mA cm-2 , which is rare for all-SM OSCs and could be attributed to the low HOMO level of FYSM-SiCl donor and the delicate balance between high crystallinity and suitable blend morphology. As a result, FYSM-SiCl achieved a high PCE of 13.4 % in all-SM OSCs, which was much higher than those of the FYSM-H- (10.9 %) and FYSM-Si-based devices (12.2 %). This work demonstrated a promising method for the design of efficient SM-donors by a side-chain engineering strategy via the introduction of trialkylsilyl and chlorine substitutions.
Collapse
Affiliation(s)
- Wenyan Su
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy MaterialsSiyuan Laboratory, Department of PhysicsJinan UniversityGuangzhou510632P. R. China
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg412 96Sweden
| | - Yang Wang
- Laboratory of Advanced Optoelectronic Materials, College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Zhihong Yin
- Laboratory of Advanced Optoelectronic Materials, College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Qunping Fan
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg412 96Sweden
| | - Xia Guo
- Laboratory of Advanced Optoelectronic Materials, College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Liyang Yu
- School of Chemical Engineering, and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Yuxiang Li
- School of Materials Science and EngineeringXi'an University of Science and TechnologyXi'an710054P. R. China
| | - Lintao Hou
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy MaterialsSiyuan Laboratory, Department of PhysicsJinan UniversityGuangzhou510632P. R. China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Qiang Peng
- School of Chemical Engineering, and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Ergang Wang
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg412 96Sweden
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
9
|
Cai Y, Li Y, Wang R, Wu H, Chen Z, Zhang J, Ma Z, Hao X, Zhao Y, Zhang C, Huang F, Sun Y. A Well-Mixed Phase Formed by Two Compatible Non-Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101733. [PMID: 34245185 DOI: 10.1002/adma.202101733] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Indexed: 06/13/2023]
Abstract
The ternary strategy, introducing a third component into a binary blend, opens a simple and promising avenue to improve the power conversion efficiency (PCE) of organic solar cells (OSCs). The judicious selection of an appropriate third component, without sacrificing the photocurrent and voltage output of the OSC, is of significant importance in ternary devices. Herein, highly efficient OSCs fabricated using a ternary approach are demonstrated, wherein a novel non-fullerene acceptor L8-BO-F is designed and incorporated into the PM6:BTP-eC9 blend. The three components show complementary absorption spectra and cascade energy alignment. L8-BO-F and BTP-eC9 are found to form a homogeneous mixed phase, which improves the molecular packing of both the donor and acceptor materials, and optimizes the ternary blend morphology. Moreover, the addition of L8-BO-F into the binary blend suppresses the non-radiative recombination, thus leading to a reduced voltage loss. Consequently, concurrent increases in open-circuit voltage, short-circuit current, and fill factor are realized, resulting in an unprecedented PCE of 18.66% (certified value of 18.2%), which represents the highest efficiency values reported for both single-junction and tandem OSCs so far.
Collapse
Affiliation(s)
- Yunhao Cai
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yun Li
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Rui Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Hongbo Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhihao Chen
- School of Physics State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jie Zhang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zaifei Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaotao Hao
- School of Physics State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Yong Zhao
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Fei Huang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yanming Sun
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
10
|
Yang C, An Q, Bai H, Zhi H, Ryu HS, Mahmood A, Zhao X, Zhang S, Woo HY, Wang J. A Synergistic Strategy of Manipulating the Number of Selenophene Units and Dissymmetric Central Core of Small Molecular Acceptors Enables Polymer Solar Cells with 17.5 % Efficiency. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104766] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Can Yang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Hai‐Rui Bai
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Hong‐Fu Zhi
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Hwa Sook Ryu
- Department of Chemistry Korea University Seoul 136-713 Republic of Korea
| | - Asif Mahmood
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Xin Zhao
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Shaowen Zhang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Han Young Woo
- Department of Chemistry Korea University Seoul 136-713 Republic of Korea
| | - Jin‐Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
11
|
Yang C, An Q, Bai HR, Zhi HF, Ryu HS, Mahmood A, Zhao X, Zhang S, Woo HY, Wang JL. A Synergistic Strategy of Manipulating the Number of Selenophene Units and Dissymmetric Central Core of Small Molecular Acceptors Enables Polymer Solar Cells with 17.5 % Efficiency. Angew Chem Int Ed Engl 2021; 60:19241-19252. [PMID: 34051037 DOI: 10.1002/anie.202104766] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/13/2021] [Indexed: 01/08/2023]
Abstract
A dissymmetric backbone and selenophene substitution on the central core was used for the synthesis of symmetric or dissymmetric A-DA'D-A type non-fullerene small molecular acceptors (NF-SMAs) with different numbers of selenophene. From S-YSS-Cl to A-WSSe-Cl and to S-WSeSe-Cl, a gradually red-shifted absorption and a gradually larger electron mobility and crystallinity in neat thin film was observed. A-WSSe-Cl and S-WSeSe-Cl exhibit stronger and tighter intermolecular π-π stacking interactions, extra S⋅⋅⋅N non-covalent intermolecular interactions from central benzothiadiazole, better ordered 3D interpenetrating charge-transfer networks in comparison with thiophene-based S-YSS-Cl. The dissymmetric A-WSSe-Cl-based device has a PCE of 17.51 %, which is the highest value for selenophene-based NF-SMAs in binary polymer solar cells. The combination of dissymmetric core and precise replacement of selenophene on the central core is effective to improve Jsc and FF without sacrificing Voc .
Collapse
Affiliation(s)
- Can Yang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hai-Rui Bai
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong-Fu Zhi
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hwa Sook Ryu
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Asif Mahmood
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xin Zhao
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shaowen Zhang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
12
|
Fan Q, Fu H, Wu Q, Wu Z, Lin F, Zhu Z, Min J, Woo HY, Jen AK. Multi‐Selenophene‐Containing Narrow Bandgap Polymer Acceptors for All‐Polymer Solar Cells with over 15 % Efficiency and High Reproducibility. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qunping Fan
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Huiting Fu
- Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Qiang Wu
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Ziang Wu
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Francis Lin
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Zonglong Zhu
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Jie Min
- The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Han Young Woo
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Alex K.‐Y. Jen
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Department of Materials Science and Engineering University of Washington Box352120 Seattle WA USA
| |
Collapse
|
13
|
Fan Q, Fu H, Wu Q, Wu Z, Lin F, Zhu Z, Min J, Woo HY, Jen AKY. Multi-Selenophene-Containing Narrow Bandgap Polymer Acceptors for All-Polymer Solar Cells with over 15 % Efficiency and High Reproducibility. Angew Chem Int Ed Engl 2021; 60:15935-15943. [PMID: 33939259 DOI: 10.1002/anie.202101577] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/23/2021] [Indexed: 11/08/2022]
Abstract
All-polymer solar cells (all-PSCs) progressed tremendously due to recent advances in polymerized small molecule acceptors (PSMAs), and their power conversion efficiencies (PCEs) have exceeded 15 %. However, the practical applications of all-PSCs are still restricted by a lack of PSMAs with a broad absorption, high electron mobility, low energy loss, and good batch-to-batch reproducibility. A multi-selenophene-containing PSMA, PFY-3Se, was developed based on a selenophene-fused SMA framework and a selenophene π-spacer. Compared to its thiophene analogue PFY-0Se, PFY-3Se shows a ≈30 nm red-shifted absorption, increased electron mobility, and improved intermolecular interaction. In all-PSCs, PFY-3Se achieved an impressive PCE of 15.1 % with both high short-circuit current density of 23.6 mA cm-2 and high fill factor of 0.737, and a low energy loss, which are among the best values in all-PSCs reported to date and much better than PFY-0Se (PCE=13.0 %). Notably, PFY-3Se maintains similarly good batch-to-batch properties for realizing reproducible device performance, which is the first reported and also very rare for the PSMAs. Moreover, the PFY-3Se-based all-PSCs show low dependence of PCE on device area (0.045-1.0 cm2 ) and active layer thickness (110-250 nm), indicating the great potential toward practical applications.
Collapse
Affiliation(s)
- Qunping Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong, Hong Kong
| | - Huiting Fu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, Hong Kong
| | - Qiang Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Ziang Wu
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Francis Lin
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong, Hong Kong
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong, Hong Kong
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong, Hong Kong.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, Hong Kong.,Department of Materials Science and Engineering, University of Washington, Box352120, Seattle, WA, USA
| |
Collapse
|
14
|
Zhu L, Zhang J, Guo Y, Yang C, Yi Y, Wei Z. Small Exciton Binding Energies Enabling Direct Charge Photogeneration Towards Low‐Driving‐Force Organic Solar Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lingyun Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Light Industry and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Chen Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
15
|
Zhu L, Zhang J, Guo Y, Yang C, Yi Y, Wei Z. Small Exciton Binding Energies Enabling Direct Charge Photogeneration Towards Low-Driving-Force Organic Solar Cells. Angew Chem Int Ed Engl 2021; 60:15348-15353. [PMID: 33942945 DOI: 10.1002/anie.202105156] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 11/10/2022]
Abstract
Organic solar cells (OSCs) with nonfullerene acceptors (NFAs) exhibit efficient charge generation under small interfacial energy offsets, leading to over 18 % efficiency for the single-junction devices based on the state-of-the-art NFA of Y6. Herein, to reveal the underlying charge generation mechanisms, we have investigated the exciton binding energy (Eb ) in Y6 by a joint theoretical and experimental study. The results show that owing to strong charge polarization effects, Y6 has remarkable small Eb of -0.11-0.15 eV, which is even lower than perovskites in many cases. Moreover, it is peculiar that the photoluminescence is enhanced with temperature, and the energy barrier for separating excitons into charges is evidently lower than the thermal energy according to the temperature dependence of photoluminescence, manifesting direct photogeneration of charge carriers enabled by weak Eb in Y6. Thus, charge generation in NFA-based OSCs shows little dependence on interfacial driving forces.
Collapse
Affiliation(s)
- Lingyun Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Chen Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|