1
|
Wang Z, Yang Z, Shishido M, Daoudi K, Hidaka M, Tateno H, Futai E, Ogawa T. Microcystis viridis NIES-102 Cyanobacteria Lectin (MVL) Interacts with SARS-CoV-2 Spike Protein Receptor Binding Domains (RBDs) via Protein-Protein Interaction. Int J Mol Sci 2024; 25:6696. [PMID: 38928400 PMCID: PMC11203576 DOI: 10.3390/ijms25126696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The emergence of coronavirus disease 2019 (COVID-19) posed a major challenge to healthcare systems worldwide, especially as mutations in the culprit Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) complicated the development of vaccines and antiviral drugs. Therefore, the search for natural products with broad anti-SARS-CoV-2 capabilities is an important option for the prevention and treatment of similar infectious diseases. Lectins, which are widely recognized as antiviral agents, could contribute to the development of anti-SARS-CoV-2 drugs. This study evaluated the binding affinity of six lectins (including the cyanobacterial lectin from Microcystis viridis NIES-102 (MVL), and Jacalin, a lectin from the breadfruit, Artocarpus altilis) to the receptor binding domain (RBD) of the spike protein on the original (wild) SARS-CoV-2 and three of its mutants: Alpha, Delta, and Omicron. MVL and Jacalin showed distinct binding affinity to the RBDs of the four SARS-CoV-2 strains. The remaining four lectins (DB1, ConA, PHA-M and CSL3) showed no such binding affinity. Although the glycan specificities of MVL and Jacalin were different, they showed the same affinity for the spike protein RBDs of the four SARS-CoV-2 strains, in the order of effectiveness Alpha > Delta > original > Omicron. The verification of glycan-specific inhibition revealed that both lectins bind to RBDs by glycan-specific recognition, but, in addition, MVL binds to RBDs through protein-protein interactions.
Collapse
Affiliation(s)
- Zhengguang Wang
- Laboratory of Enzymology, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan; (Z.W.); (Z.Y.); (M.S.); (K.D.); (M.H.); (E.F.)
| | - Zhihan Yang
- Laboratory of Enzymology, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan; (Z.W.); (Z.Y.); (M.S.); (K.D.); (M.H.); (E.F.)
| | - Mami Shishido
- Laboratory of Enzymology, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan; (Z.W.); (Z.Y.); (M.S.); (K.D.); (M.H.); (E.F.)
| | - Khadija Daoudi
- Laboratory of Enzymology, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan; (Z.W.); (Z.Y.); (M.S.); (K.D.); (M.H.); (E.F.)
| | - Masafumi Hidaka
- Laboratory of Enzymology, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan; (Z.W.); (Z.Y.); (M.S.); (K.D.); (M.H.); (E.F.)
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan;
| | - Eugene Futai
- Laboratory of Enzymology, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan; (Z.W.); (Z.Y.); (M.S.); (K.D.); (M.H.); (E.F.)
| | - Tomohisa Ogawa
- Laboratory of Enzymology, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan; (Z.W.); (Z.Y.); (M.S.); (K.D.); (M.H.); (E.F.)
| |
Collapse
|
2
|
Aloor A, Aradhya R, Venugopal P, Gopalakrishnan Nair B, Suravajhala R. Glycosylation in SARS-CoV-2 variants: A path to infection and recovery. Biochem Pharmacol 2022; 206:115335. [PMID: 36328134 PMCID: PMC9621623 DOI: 10.1016/j.bcp.2022.115335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Glycan is an essential molecule that controls and drives life in a precise direction. The paucity of research in glycobiology may impede the significance of its role in the pandemic guidelines. The SARS-CoV-2 spike protein is heavily glycosylated, with 22 putative N-glycosylation sites and 17 potential O-glycosylation sites discovered thus far. It is the anchor point to the host cell ACE2 receptor, TMPRSS2, and many other host proteins that can be recognized by their immune system; hence, glycosylation is considered the primary target of vaccine development. Therefore, it is essential to know how this surface glycan plays a role in viral entry, infection, transmission, antigen, antibody responses, and disease progression. Although the vaccines are developed and applied against COVID-19, the proficiency of the immunizations is not accomplished with the current mutant variations. The role of glycosylation in SARS-CoV-2 and its receptor ACE2 with respect to other putative cell glycan receptors and the significance of glycan in host cell immunity in COVID-19 are discussed in this paper. Hence, the molecular signature of the glycan in the coronavirus infection can be incorporated into the mainstream therapeutic process.
Collapse
Affiliation(s)
- Arya Aloor
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | - Parvathy Venugopal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | | | - Renuka Suravajhala
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| |
Collapse
|
3
|
Zhu B, Chen Z, Shen J, Xu Y, Lan R, Sun S. Structural- and Site-Specific N-Glycosylation Characterization of COVID-19 Virus Spike with StrucGP. Anal Chem 2022; 94:12274-12279. [PMID: 36036581 PMCID: PMC9454267 DOI: 10.1021/acs.analchem.2c02265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
Abstract
The spike (S) protein plays a key role in COVID-19 (SARS-CoV-2) infection and host-cell entry. Previous studies have systematically analyzed site-specific glycan compositions as well as many important structural motifs of the S protein. Here, we further provide structural-clear N-glycosylation of the S protein at a site-specific level by using our recently developed structural- and site-specific N-glycoproteomics sequencing algorithm, StrucGP. In addition to the common N-glycans as detected in previous studies, many uncommon glycosylation structures such as LacdiNAc structures, Lewis structures, Mannose 6-phosphate (M6P) residues, and bisected core structures were unambiguously mapped at a total of 20 glycosites in the S protein trimer and protomer. These data further support the glycosylation structural-functional investigations of the COVID-19 virus spike.
Collapse
Affiliation(s)
- Bojing Zhu
- College of Life Sciences, Northwest University, Xi’an, Shaanxi Province 710069, China
| | - Zexuan Chen
- College of Life Sciences, Northwest University, Xi’an, Shaanxi Province 710069, China
| | - Jiechen Shen
- College of Life Sciences, Northwest University, Xi’an, Shaanxi Province 710069, China
| | - Yintai Xu
- College of Life Sciences, Northwest University, Xi’an, Shaanxi Province 710069, China
| | - Rongxia Lan
- College of Life Sciences, Northwest University, Xi’an, Shaanxi Province 710069, China
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi’an, Shaanxi Province 710069, China
| |
Collapse
|
4
|
Unione L, Moure MJ, Lenza MP, Oyenarte I, Ereño‐Orbea J, Ardá A, Jiménez‐Barbero J. The SARS-CoV-2 Spike Glycoprotein Directly Binds Exogeneous Sialic Acids: A NMR View. Angew Chem Int Ed Engl 2022; 61:e202201432. [PMID: 35191576 PMCID: PMC9074024 DOI: 10.1002/anie.202201432] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 01/07/2023]
Abstract
The interaction of the SARS CoV2 spike glycoprotein with two sialic acid-containing trisaccharides (α2,3 and α2,6 sialyl N-acetyllactosamine) has been demonstrated by NMR. The NMR-based distinction between the signals of those sialic acids in the glycans covalently attached to the spike protein and those belonging to the exogenous α2,3 and α2,6 sialyl N-acetyllactosamine ligands has been achieved by synthesizing uniformly 13 C-labelled trisaccharides at the sialic acid and galactose moieties. STD-1 H,13 C-HSQC NMR experiments elegantly demonstrate the direct interaction of the sialic acid residues of both trisaccharides with additional participation of the galactose moieties, especially for the α2,3-linked analogue. Additional experiments with the spike protein in the presence of a specific antibody for the N-terminal domain and with the isolated receptor binding and N-terminal domains of the spike protein unambiguously show that the sialic acid binding site is located at the N-terminal domain.
Collapse
Affiliation(s)
- Luca Unione
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
| | - María J. Moure
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
| | - Maria Pia Lenza
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
| | - Iker Oyenarte
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
| | - June Ereño‐Orbea
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
- IkerbasqueBasque Foundation for ScienceMaria Diaz de Haro 348013 BilbaoBizkaiaSpain
| | - Ana Ardá
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
- IkerbasqueBasque Foundation for ScienceMaria Diaz de Haro 348013 BilbaoBizkaiaSpain
| | - Jesús Jiménez‐Barbero
- CICbioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048162 DerioBizkaiaSpain
- IkerbasqueBasque Foundation for ScienceMaria Diaz de Haro 348013 BilbaoBizkaiaSpain
- Department of Organic ChemistryII Faculty of Science and Technology University of the Basque Country, EHU-UPV48940LeioaSpain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias (CIBERES)28029MadridSpain
| |
Collapse
|
5
|
Unione L, Moure MJ, Lenza MP, Oyenarte I, Ereño‐Orbea J, Ardá A, Jiménez‐Barbero J. The SARS‐CoV‐2 Spike Glycoprotein Directly Binds Exogeneous Sialic Acids: A NMR View. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Luca Unione
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
| | - María J. Moure
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
| | - Maria Pia Lenza
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
| | - Iker Oyenarte
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
| | - June Ereño‐Orbea
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Bizkaia Spain
| | - Ana Ardá
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Bizkaia Spain
| | - Jesús Jiménez‐Barbero
- CICbioGUNE Basque Research & Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48162 Derio Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Bizkaia Spain
- Department of Organic Chemistry II Faculty of Science and Technology University of the Basque Country, EHU-UPV 48940 Leioa Spain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias (CIBERES) 28029 Madrid Spain
| |
Collapse
|
6
|
Reis CA, Tauber R, Blanchard V. Glycosylation is a key in SARS-CoV-2 infection. J Mol Med (Berl) 2021; 99:1023-1031. [PMID: 34023935 PMCID: PMC8140746 DOI: 10.1007/s00109-021-02092-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 causes the respiratory syndrome COVID-19 and is responsible for the current pandemic. The S protein of SARS-CoV-2-mediating virus binding to target cells and subsequent viral uptake is extensively glycosylated. Here we focus on how glycosylation of both SARS-CoV-2 and target cells crucially impacts SARS-CoV-2 infection at different levels: (1) virus binding and entry to host cells, with glycosaminoglycans of host cells acting as a necessary co-factor for SARS-CoV-2 infection by interacting with the receptor-binding domain of the SARS-CoV-2 spike glycoprotein, (2) innate and adaptive immune response where glycosylation plays both a protective role and contributes to immune evasion by masking of viral polypeptide epitopes and may add to the cytokine cascade via non-fucosylated IgG, and (3) therapy and vaccination where a monoclonal antibody-neutralizing SARS-CoV-2 was shown to interact also with a distinct glycan epitope on the SARS-CoV-2 spike protein. These evidences highlight the importance of ensuring that glycans are considered when tackling this disease, particularly in the development of vaccines, therapeutic strategies and serological testing.
Collapse
Affiliation(s)
- Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313, Porto, Portugal
| | - Rudolf Tauber
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Véronique Blanchard
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
7
|
Ye F, Zhao J, Xu P, Liu X, Yu J, Shangguan W, Liu J, Luo X, Li C, Ying T, Wang J, Yu B, Wang P. Synthetic Homogeneous Glycoforms of the SARS‐CoV‐2 Spike Receptor‐Binding Domain Reveals Different Binding Profiles of Monoclonal Antibodies. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Farong Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Jie Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Xinliang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Jing Yu
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Wei Shangguan
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Jiazhi Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Xiaosheng Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Cheng Li
- Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) School of Basic Medical Sciences Fudan University Shanghai 200032 China
| | - Tianlei Ying
- Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) School of Basic Medical Sciences Fudan University Shanghai 200032 China
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
- Institutes for Life Sciences School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangdong 510006 China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
8
|
Lima CDL, Coelho H, Gimeno A, Trovão F, Diniz A, Dias JS, Jiménez-Barbero J, Corzana F, Carvalho AL, Cabrita EJ, Marcelo F. Structural Insights into the Molecular Recognition Mechanism of the Cancer and Pathogenic Epitope, LacdiNAc by Immune-Related Lectins. Chemistry 2021; 27:7951-7958. [PMID: 33826192 DOI: 10.1002/chem.202100800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/22/2022]
Abstract
Interactions of glycan-specific epitopes to human lectin receptors represent novel immune checkpoints for investigating cancer and infection diseases. By employing a multidisciplinary approach that combines isothermal titration calorimetry, NMR spectroscopy, molecular dynamics simulations, and X-ray crystallography, we investigated the molecular determinants that govern the recognition of the tumour and pathogenic glycobiomarker LacdiNAc (GalNAcβ1-4GlcNAc, LDN), including their comparison with the ubiquitous LacNAc epitope (Galβ1-4GlcNAc, LN), by two human immune-related lectins, galectin-3 (hGal-3) and the macrophage galactose C-type lectin (hMGL). A different mechanism of binding and interactions was observed for the hGal-3/LDN and hMGL/LDN complexes, which explains the remarkable difference in the binding specificity of LDN and LN by these two lectins. The new structural clues reported herein are fundamental for the chemical design of mimetics targeting hGal-3/hMGL recognition process.
Collapse
Affiliation(s)
- Carlos D L Lima
- UCIBIO, REQUIMTE, Departamento de Quimica, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Helena Coelho
- UCIBIO, REQUIMTE, Departamento de Quimica, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Ana Gimeno
- CIC bioGUNE, Bizkaia, Technology Park, Building 801A, 48170, Derio, Spain
| | - Filipa Trovão
- UCIBIO, REQUIMTE, Departamento de Quimica, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Ana Diniz
- UCIBIO, REQUIMTE, Departamento de Quimica, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Jorge S Dias
- UCIBIO, REQUIMTE, Departamento de Quimica, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia, Technology Park, Building 801A, 48170, Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Francisco Corzana
- Departamento de Quimica, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006, Logroño, Spain
| | - Ana Luísa Carvalho
- UCIBIO, REQUIMTE, Departamento de Quimica, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Eurico J Cabrita
- UCIBIO, REQUIMTE, Departamento de Quimica, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Filipa Marcelo
- UCIBIO, REQUIMTE, Departamento de Quimica, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
9
|
Ye F, Zhao J, Xu P, Liu X, Yu J, Shangguan W, Liu J, Luo X, Li C, Ying T, Wang J, Yu B, Wang P. Synthetic Homogeneous Glycoforms of the SARS-CoV-2 Spike Receptor-Binding Domain Reveals Different Binding Profiles of Monoclonal Antibodies. Angew Chem Int Ed Engl 2021; 60:12904-12910. [PMID: 33709491 PMCID: PMC8251112 DOI: 10.1002/anie.202100543] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/23/2021] [Indexed: 12/16/2022]
Abstract
SARS‐CoV‐2 attaches to its host receptor, angiotensin‐converting enzyme 2 (ACE2), via the receptor‐binding domain (RBD) of the spike protein. The RBD glycoprotein is a critical target for the development of neutralizing antibodies and vaccines against SARS‐CoV‐2. However, the high heterogeneity of RBD glycoforms may lead to an incomplete neutralization effect and impact the immunogenic integrity of RBD‐based vaccines. Investigating the role of different carbohydrate domains is of paramount importance. Unfortunately, there is no viable method for preparing RBD glycoproteins with structurally defined glycans. Herein we describe a highly efficient and scalable strategy for the preparation of six glycosylated RBDs bearing defined structure glycoforms at T323, N331, and N343. A combination of modern oligosaccharide, peptide synthesis and recombinant protein engineering provides a robust route to decipher carbohydrate structure‐function relationships.
Collapse
Affiliation(s)
- Farong Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xinliang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Yu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wei Shangguan
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiazhi Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaosheng Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cheng Li
- Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tianlei Ying
- Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.,Institutes for Life Sciences, School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China.,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|