Zheng DN, Szell PMJ, Khiri S, Ovens JS, Bryce DL. Solid-state multinuclear magnetic resonance and X-ray crystallographic investigation of the phosphorus...iodine halogen bond in a bis(dicyclohexylphenylphosphine)(1,6-diiodoperfluorohexane) cocrystal.
ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2022;
78:557-563. [PMID:
35702972 DOI:
10.1107/s2052520622004322]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Halogen bonding to phosphorus atoms remains uncommon, with relatively few examples reported in the literature. Here, the preparation and investigation of the cocrystal bis(dicyclohexylphenylphosphine)(1,6-diiodoperfluorohexane) by X-ray crystallography and solid-state multinuclear magnetic resonance spectroscopy is described. The crystal structure features two crystallographically unique C-I...P halogen bonds [dI...P = 3.090 (5) Å, 3.264 (5) Å] and crystallographic disorder of one of the 1,6-diiodoperfluorohexane molecules. The first of these is the shortest and most linear I...P halogen bond reported to date. 13C, 19F, and 31P magic angle spinning solid-state NMR spectra are reported. A 31P chemical shift change of -7.0 p.p.m. in the cocrystal relative to pure dicyclohexylphenylphosphine, consistent with halogen bond formation, is noted. This work establishes iodoperfluoroalkanes as viable halogen bond donors when paired with phosphorus acceptors, and also shows that dicyclohexylphenylphosphine can act as a practical halogen bond acceptor.
Collapse