1
|
Wang Y, Denisov N, Qin S, Gonçalves DS, Kim H, Sarma BB, Schmuki P. Stable and Highly Active Single Atom Configurations for Photocatalytic H 2 Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400626. [PMID: 38520245 DOI: 10.1002/adma.202400626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The employment of single atoms (SAs), especially Pt SAs, as co-catalysts in photocatalytic H2 generation has gained significant attention due to their exceptional efficiency. However, a major challenge in their application is the light-induced agglomeration of these SAs into less active nanosized particles under photocatalytic conditions. This study addresses the stability and reactivity of Pt SAs on TiO2 surfaces by investigating various post-deposition annealing treatments in air, Ar, and Ar-H2 environments at different temperatures. It is described that annealing in an Ar-H2 atmosphere optimally stabilizes SA configurations, forming stable 2D rafts of assembled SAs ≈0.5-1 nm in diameter. These rafts not only resist light-induced agglomeration but also exhibit significantly enhanced H2 production efficiency. The findings reveal a promising approach to maintaining the high reactivity of Pt SAs while overcoming the critical challenge of their stability under photocatalytic conditions.
Collapse
Affiliation(s)
- Yue Wang
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058, Erlangen, Germany
| | - Nikita Denisov
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058, Erlangen, Germany
| | - Shanshan Qin
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058, Erlangen, Germany
| | - Danielle Santos Gonçalves
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Hyesung Kim
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058, Erlangen, Germany
| | - Bidyut Bikash Sarma
- Institute of Catalysis Research and Technology and Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Patrik Schmuki
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058, Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, Olomouc, 78371, Czech Republic
| |
Collapse
|
2
|
Lee J, Tieu P, Finzel J, Zang W, Yan X, Graham G, Pan X, Christopher P. How Pt Influences H 2 Reactions on High Surface-Area Pt/CeO 2 Powder Catalyst Surfaces. JACS AU 2023; 3:2299-2313. [PMID: 37654595 PMCID: PMC10466333 DOI: 10.1021/jacsau.3c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023]
Abstract
The addition of platinum-group metals (PGMs, e.g., Pt) to CeO2 is used in heterogeneous catalysis to promote the rate of redox surface reactions. Well-defined model system studies have shown that PGMs facilitate H2 dissociation, H-spillover onto CeO2 surfaces, and CeO2 surface reduction. However, it remains unclear how the heterogeneous structures and interfaces that exist on powder catalysts influence the mechanistic picture of PGM-promoted H2 reactions on CeO2 surfaces developed from model system studies. Here, controlled catalyst synthesis, temperature-programmed reduction (TPR), in situ infrared spectroscopy (IR), and in situ electron energy loss spectroscopy (EELS) were used to interrogate the mechanisms of how Pt nanoclusters and single atoms influence H2 reactions on high-surface area Pt/CeO2 powder catalysts. TPR showed that Pt promotes H2 consumption rates on Pt/CeO2 even when Pt exists on a small fraction of CeO2 particles, suggesting that H-spillover proceeds far from Pt-CeO2 interfaces and across CeO2-CeO2 particle interfaces. IR and EELS measurements provided evidence that Pt changes the mechanism of H2 activation and the rate limiting step for Ce3+, oxygen vacancy, and water formation as compared to pure CeO2. As a result, higher-saturation surface hydroxyl coverages can be achieved on Pt/CeO2 compared to pure CeO2. Further, Ce3+ formed by spillover-H from Pt is heterogeneously distributed and localized at and around interparticle CeO2-CeO2 boundaries, while activated H2 on pure CeO2 results in homogeneously distributed Ce3+. Ce3+ localization at and around CeO2-CeO2 boundaries for Pt/CeO2 is accompanied by surface reconstruction that enables faster rates of H2 consumption. This study reconciles the materials gap between model structures and powder catalysts for H2 reactions with Pt/CeO2 and highlights how the spatial heterogeneity of powder catalysts dictates the influence of Pt on H2 reactions at CeO2 surfaces.
Collapse
Affiliation(s)
- Jaeha Lee
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Peter Tieu
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Jordan Finzel
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Wenjie Zang
- Department
of Materials Science and Engineering, University
of California Irvine, Irvine, California 92697, United States
| | - Xingxu Yan
- Department
of Materials Science and Engineering, University
of California Irvine, Irvine, California 92697, United States
| | - George Graham
- Department
of Materials Science and Engineering, University
of California Irvine, Irvine, California 92697, United States
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiaoqing Pan
- Department
of Materials Science and Engineering, University
of California Irvine, Irvine, California 92697, United States
- Department
of Physics and Astronomy, University of
California Irvine, Irvine, California 92697, United States
- Irvine
Materials Research Institute (IMRI), University
of California Irvine, Irvine, California 92697, United States
| | - Phillip Christopher
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
3
|
Zhang Z, Liu M, Xie Y, Guo Z, Feng H, Wang H. Superstructured Nanocrystals/Dual-Doped Mesoporous Carbon Anodes for High-Performance Sodium-Ion Batteries. Inorg Chem 2022; 61:8887-8897. [PMID: 35621082 DOI: 10.1021/acs.inorgchem.2c01009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two-dimensional ordered superstructures have been attracting considerable attention due to their interesting properties and potential applications. However, designing ideal functional superstructures with excellent electrochemical properties is still a major challenge, and an in-depth understanding of the structure-activity relationship of electrodes remains to be achieved. To elucidate this critical issue, herein, we rationally designed and synthesized for the first time superstructured TiO2/dual-doped mesoporous carbon anodes using confined space and surface coassembly strategies. Our method primarily relied on the larger interlayer space few-layered MXene and its negatively charged surface, allowing hexamethylenetetramine intercalation and surface electrostatic adsorption. The superstructured TiO2/dual-doped mesoporous carbon was successfully assembled by the thermal decomposition of a confined carbon precursor. Subsequently, the comparison of Na+-storage properties of various anodes was carried out based on the results of structural characterization techniques and electrochemical analysis methods. The results showed that the optimized anode (N/O-C@TiO2-20) can deliver a reversible capacity of 165 mA h g-1 after 1000 cycles at a current density of 1 A g-1, indicating excellent electrochemical properties. The enhancement can be attributed to the synergistic effect of carbon domains, defective nanocrystals, and a covalently coupled interface between TiO2 and mesoporous carbon. Our work not only offered a new strategy for the assembly and regulation of superstructures to promote the electrochemical performance but also enlightened the rational design of advanced anodes for sodium-ion battery application.
Collapse
Affiliation(s)
- Zilu Zhang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Ming Liu
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
| | - Yunyun Xie
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Zhiwei Guo
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
| | - Hua Feng
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
| | - Hai Wang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.,College of Physics and Technology, Guangxi Normal University, Guilin 541004, China.,Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou 350117, China
| |
Collapse
|
4
|
Potts DS, Bregante DT, Adams JS, Torres C, Flaherty DW. Influence of solvent structure and hydrogen bonding on catalysis at solid-liquid interfaces. Chem Soc Rev 2021; 50:12308-12337. [PMID: 34569580 DOI: 10.1039/d1cs00539a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Solvent molecules interact with reactive species and alter the rates and selectivities of catalytic reactions by orders of magnitude. Specifically, solvent molecules can modify the free energies of liquid phase and surface species via solvation, participating directly as a reactant or co-catalyst, or competitively binding to active sites. These effects carry consequences for reactions relevant for the conversion of renewable or recyclable feedstocks, the development of distributed chemical manufacturing, and the utilization of renewable energy to drive chemical reactions. First, we describe the quantitative impact of these effects on steady-state catalytic turnover rates through a rate expression derived for a generic catalytic reaction (A → B), which illustrates the functional dependence of rates on each category of solvent interaction. Second, we connect these concepts to recent investigations of the effects of solvents on catalysis to show how interactions between solvent and reactant molecules at solid-liquid interfaces influence catalytic reactions. This discussion demonstrates that the design of effective liquid phase catalytic processes benefits from a clear understanding of these intermolecular interactions and their implications for rates and selectivities.
Collapse
Affiliation(s)
- David S Potts
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Daniel T Bregante
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jason S Adams
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Chris Torres
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
5
|
Ye A, Li Z, Ding J, Xiong W, Huang W. Synergistic Catalysis of Al and Zn Sites of Spinel ZnAl2O4 Catalyst for CO Hydrogenation to Methanol and Dimethyl Ether. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aiai Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhaorui Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jieqiong Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wei Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|