1
|
Sun X, Qiao T, Zhang Z, Wang X, Gao Z, Ding D. A near-infrared fluorescent probe with assembly/aggregation-induced retention effect for specific diagnosis of metastasis and image-guided surgery in breast cancer. Biosens Bioelectron 2024; 267:116801. [PMID: 39357494 DOI: 10.1016/j.bios.2024.116801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Image-guided surgery is crucial for achieving complete tumor resection, reducing postoperative recurrence and improving patient survival. However, current clinical near-infrared fluorescent probes, such as indocyanine green (ICG), face two main limitations: 1) lack of active tumor targeting, and 2) short retention time in tumors, which restricts real-time imaging during surgery. To address these issues, we developed a near-infrared fluorescent probe capable of in situ nanofiber formation within tumor lesions. This probe actively targets the integrin αvβ3 receptors overexpressed on breast cancer cells and exhibits assembly/aggregation-induced retention effects at the tumor site, significantly extending the imaging time window. Additionally, we found that the probe's fluorescence intensity can be enhanced under receptor induction. Due to its excellent tumor specificity and sensitivity, 1FCG-FFGRGD not only identifies primary breast cancer but also precisely locates smaller lymph node metastases and detects sub-millimeter peritoneal metastases. In summary, this near-infrared probe, leveraging assembly/aggregation-induced retention effects, holds substantial potential for various biomedical applications.
Collapse
Affiliation(s)
- Xuan Sun
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Tianhe Qiao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Zuyuan Zhang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| | - Zhiyuan Gao
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300350, China.
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
2
|
Zhang Z, Chen P, Sun Y. Enzyme-Instructed Aggregation/Dispersion of Fluorophores for Near-Infrared Fluorescence Imaging In Vivo. Molecules 2023; 28:5360. [PMID: 37513233 PMCID: PMC10385274 DOI: 10.3390/molecules28145360] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Near-infrared (NIR) fluorescence is a noninvasive, highly sensitive, and high-resolution modality with great potential for in vivo imaging. Compared with "Always-On" probes, activatable NIR fluorescent probes with "Turn-Off/On" or "Ratiometric" fluorescent signals at target sites exhibit better signal-to-noise ratio (SNR), wherein enzymes are one of the ideal triggers for probe activation, which play vital roles in a variety of biological processes. In this review, we provide an overview of enzyme-activatable NIR fluorescent probes and concentrate on the design strategies and sensing mechanisms. We focus on the aggregation/dispersion state of fluorophores after the interaction of probes and enzymes and finally discuss the current challenges and provide some perspective ideas for the construction of enzyme-activatable NIR fluorescent probes.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, China
| | - Peiyao Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
3
|
Fernandes R, Chowdhary S, Mikula N, Saleh N, Kanevche K, Berlepsch HV, Hosogi N, Heberle J, Weber M, Böttcher C, Koksch B. Cyanine Dye Coupling Mediates Self-assembly of a pH Sensitive Peptide into Novel 3D Architectures. Angew Chem Int Ed Engl 2022; 61:e202208647. [PMID: 36161448 PMCID: PMC9828782 DOI: 10.1002/anie.202208647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/12/2023]
Abstract
Synthetic multichromophore systems are of great importance in artificial light harvesting devices, organic optoelectronics, tumor imaging and therapy. Here, we introduce a promising strategy for the construction of self-assembled peptide templated dye stacks based on coupling of a de novo designed pH sensitive peptide with a cyanine dye Cy5 at its N-terminus. Microscopic techniques, in particular cryogenic TEM (cryo-TEM) and cryo-electron tomography technique (cryo-ET), reveal two types of highly ordered three-dimensional assembly structures on the micrometer scale. Unbranched compact layered rods are observed at pH 7.4 and two-dimensional membrane-like assemblies at pH 3.4, both species displaying spectral features of H-aggregates. Molecular dynamics simulations reveal that the coupling of Cy5 moieties promotes the formation of both ultrastructures, whereas the protonation states of acidic and basic amino acid side chains dictates their ultimate three-dimensional organization.
Collapse
Affiliation(s)
- Rita Fernandes
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Suvrat Chowdhary
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Natalia Mikula
- Mathematics for Life and Materials SciencesZuse Institute BerlinTakustraße 714195BerlinGermany
| | - Noureldin Saleh
- Mathematics for Life and Materials SciencesZuse Institute BerlinTakustraße 714195BerlinGermany
| | - Katerina Kanevche
- Department of PhysicsExperimental Molecular BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Hans v. Berlepsch
- Research Center for Electron Microscopy and Core Facility BioSupraMolFreie Universität BerlinFabeckstraße 36a14195BerlinGermany
| | | | - Joachim Heberle
- Department of PhysicsExperimental Molecular BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Marcus Weber
- Mathematics for Life and Materials SciencesZuse Institute BerlinTakustraße 714195BerlinGermany
| | - Christoph Böttcher
- Research Center for Electron Microscopy and Core Facility BioSupraMolFreie Universität BerlinFabeckstraße 36a14195BerlinGermany
| | - Beate Koksch
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| |
Collapse
|
4
|
Xu C, Ye R, Shen H, Lam JWY, Zhao Z, Zhong Tang B. Molecular Motion and Nonradiative Decay: Towards Efficient Photothermal and Photoacoustic Systems. Angew Chem Int Ed Engl 2022; 61:e202204604. [PMID: 35543996 DOI: 10.1002/anie.202204604] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 12/11/2022]
Abstract
Nonradiative decay invariably competes with radiative decay during the deexcitation process of matter. In the community of luminescence research, nonradiative decay has been deemed less attractive than radiative decay. However, all things in their being are good for something and so is nonradiative decay. As the molecular motion-facilitated nonradiative decay (MMFND) effect is inevitable in photophysical processes, it provides a new avenue to convert the harvested light energy into exploitable forms by harnessing molecular motion. In many cases, active molecular motion enables thermal deactivation from excited states. In this Minireview, recent advances in photothermal and photoacoustic systems with MMFND character are summarized. We believe that this presentation of the rational engineering of molecular motion for efficient photothermal generation will deepen the understanding of the relationship between molecular motion and nonradiative decay and navigate people to rethink the positive aspects of nonradiative decay for the establishment of new light-controllable techniques.
Collapse
Affiliation(s)
- Changhuo Xu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
5
|
Xu C, Ye R, Shen H, Lam JWY, Zhao Z, Zhong Tang B. Molecular Motion and Nonradiative Decay: Towards Efficient Photothermal and Photoacoustic Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Changhuo Xu
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
| | - Ruquan Ye
- Department of Chemistry State Key Laboratory of Marine Pollution City University of Hong Kong Hong Kong 999077 China
| | - Hanchen Shen
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
| | - Zheng Zhao
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
| |
Collapse
|
6
|
Hou DY, Zhang NY, Wang MD, Xu SX, Wang ZJ, Hu XJ, Lv GT, Wang JQ, Wu XH, Wang L, Cheng DB, Wang H, Xu W. In Situ Constructed Nano-Drug Depots through Intracellular Hydrolytic Condensation for Chemotherapy of Bladder Cancer. Angew Chem Int Ed Engl 2022; 61:e202116893. [PMID: 35181975 DOI: 10.1002/anie.202116893] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 01/20/2023]
Abstract
Intravesical administration of first-line drugs has shown failure in the treatment of bladder cancer owing to the poor tumor retention time of chemotherapeutics. Herein, we report an intracellular hydrolytic condensation (IHC) system to construct long-term retentive nano-drug depots in situ, wherein sustained drug release results in highly efficient suppression of bladder cancer. Briefly, the designed doxorubicin (Dox)-silane conjugates self-assemble into silane-based prodrug nanoparticles, which condense into silicon particle-based nano-drug depots inside tumor cells. Significantly, we demonstrate that the IHC system possesses highly potent antitumor efficacy, which leads to the regression and eradication of large established tumors and simultaneously extends the overall survival of air pouch bladder cancer mice compared with that of mice treated with Dox. The concept of intracellular hydrolytic condensation can be extended via conjugating other chemotherapeutic drugs, which may facilitate rational design of novel nanomedicines for augmentation of chemotherapy.
Collapse
Affiliation(s)
- Da-Yong Hou
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China.,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ni-Yuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Man-Di Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Shao-Xin Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhi-Jia Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China.,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Xing-Jie Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.,Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Gan-Tian Lv
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jia-Qi Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China.,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Xiu-Hai Wu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China.,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Lu Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China.,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering&Life Science, Wuhan University of Technology, No.122 Luoshi Road, Wuhan, 430070, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Wanhai Xu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China.,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
7
|
Hou DY, Zhang NY, Wang MD, Xu SX, Wang ZJ, Hu XJ, Lv GT, Wang JQ, Wu XH, Wang L, Cheng DB, Wang H, Xu W. In Situ Constructed Nano‐drug Depots through Intracellular Hydrolytic Condensation for Chemotherapy of Bladder Cancer. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Da-Yong Hou
- Fourth Affiliated Hospital of Harbin Medical University Department of urology CHINA
| | - Ni-Yuan Zhang
- National Center for Nanoscience and Technology CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CHINA
| | - Man-Di Wang
- National Center for Nanoscience and Technology CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CHINA
| | - Shao-Xin Xu
- National Center for Nanoscience and Technology CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CHINA
| | - Zhi-Jia Wang
- Fourth Affiliated Hospital of Harbin Medical University Department of Urology CHINA
| | - Xing-Jie Hu
- Zhengzhou University Henan Institute of Advanced Tecnology CHINA
| | - Gan-Tian Lv
- National Center for Nanoscience and Technology CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CHINA
| | - Jia-Qi Wang
- Fourth Affiliated Hospital of Harbin Medical University Department of Urology CHINA
| | - Xiu-Hai Wu
- Fourth Affiliated Hospital of Harbin Medical University Department of Urology CHINA
| | - Lu Wang
- Fourth Affiliated Hospital of Harbin Medical University Department of Urology CHINA
| | | | - Hao Wang
- National Center for Nanoscience and Technology No. 11 Beiyitiao, Zhongguancun 100190 Beijing CHINA
| | - Wanhai Xu
- Fourth Affiliated Hospital of Harbin Medical University Department of Urology CHINA
| |
Collapse
|
8
|
Fu Q, Feng H, Su L, Zhang X, Liu L, Fu F, Yang H, Song J. An Activatable Hybrid Organic–Inorganic Nanocomposite as Early Evaluation System of Therapy Effect. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Hongjuan Feng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Luntao Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Fengfu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
9
|
Fu Q, Feng H, Su L, Zhang X, Liu L, Fu F, Yang H, Song J. An Activatable Hybrid Organic-Inorganic Nanocomposite as Early Evaluation System of Therapy Effect. Angew Chem Int Ed Engl 2021; 61:e202112237. [PMID: 34882312 DOI: 10.1002/anie.202112237] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 11/07/2022]
Abstract
Delays in evaluating cancer response to radiotherapy (RT) usually reduce therapy effect or miss the right time for treatment optimization. Hence, exploring timely and accurate methods enabling one to gain insights of RT response are highly desirable. In this study, we have developed an apoptosis enzyme (caspase-3) activated nanoprobe for early evaluation of RT efficacy. The nanoprobe bridged the nanogapped gold nanoparticles (AuNNPs) and the second near-infrared window (NIR-II) fluorescent (FL) molecules (IR-1048) through a caspase-3 specific peptide sequence (DEVD) (AuNNP@DEVD-IR1048). After X-ray irradiation, caspase-3 was activated to cut DEVD, turning on both NIR-II FL and PA imaging signals. The increased NIR-II FL/PA signals exhibited a positive correlation with the content of caspase-3. Moreover, the amount of the activated caspase-3 was negatively correlated with the tumor size. The results underscore the role of the caspase-3 activated by X-ray irradiation in bridging the imaging signals variation and tumor inhibition rate. Overall, activatable NIR-II FL/PA imaging was successfully used to timely predict and evaluate the RT efficacy. The evaluation system based on biomarker-triggered living imaging has the capacity to guide treatment decisions for numerous cancer types.
Collapse
Affiliation(s)
- Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hongjuan Feng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Luntao Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Fengfu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|