1
|
Zhong Y, Chen Y, Chen L, Hu Y, Xiao X, Xia L, Li G. Chiral-Controlled Cyclic Chemiluminescence Reactions for the Analysis of Enantiomer Amino Acids. Anal Chem 2023; 95:6971-6979. [PMID: 37068187 DOI: 10.1021/acs.analchem.3c00362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
The similarity and complexity of chiral amino acids (AAs) in complex samples remain a significant challenge in their analysis. In this work, the chiral metal-organic framework (MOF)-controlled cyclic chemiluminescence (CCL) reaction is developed and utilized in the analysis of enantiomer AAs. The chiral MOF of d-Co0.75Zn0.25-MOF-74 is designed and prepared by modifying the Co0.75Zn0.25-MOF-74 with d-tartaric acid. The developed chiral bimetallic MOF can not only offer the chiral recognize sites but also act as the catalyst in the cyclic luminol-H2O2 reaction. Moreover, a distinguishable CCL signal can be obtained on enantiomer AAs via the luminol-H2O2 reaction with the control of d-Co0.75Zn0.25-MOF-74. The amplified difference of enantiomer AAs can be quantified by the decay coefficient (k-values) which are calculated from the exponential decay fitting of their obtained CCL signals. According to simulation results, the selective recognition of 19 pairs of AAs is controlled by the pore size of the MOF-74 and their hydrogen-bond interaction with d-tartaric acid on the chiral MOF. Furthermore, the k-values can also be used to estimate the change of chiral AAs in complex samples. Consequently, this chiral MOF-controlled CCL reaction is applied to differentiate enantiomer AAs involved in the quality monitoring of dairy products and auxiliary diagnosis, which provides a new approach for chiral studies and their potential applications.
Collapse
Affiliation(s)
- Yanhui Zhong
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanlong Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Linyuan Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Leveraging first-principles and empirical models for disturbance detection in continuous pharmaceutical syntheses. J Flow Chem 2023. [DOI: 10.1007/s41981-023-00266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
3
|
Molnar M, Baumann M. Continuous flow synthesis of phenyl glucosazone and its conversion to 2H-1,2,3-Triazole building blocks. J Flow Chem 2023. [DOI: 10.1007/s41981-022-00255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AbstractA continuous flow approach for the generation of phenyl glucosazone from glucose and phenyl hydrazine is reported giving the pure target in 53% isolated yield. This thermal process generates the target product as an insoluble material that causes reactor fouling via adhering to the reactor walls. To overcome this issue a segmented flow approach was realised whereby streams of air and the reaction solution were combined in a T-piece and directed through the heated reactor coil. The resulting micro-mixing prevented reactor fouling and blocking and allowed for multi-hour reactions to generate the desired target in high yield. The value of the phenyl glucosazone product was demonstrated via its oxidative cyclisation into 2H-phenyl-1,2,3-triazoles which represent important heterocyclic scaffolds.
Collapse
|
4
|
Besenhard MO, Pal S, Storozhuk L, Dawes S, Thanh NTK, Norfolk L, Staniland S, Gavriilidis A. A versatile non-fouling multi-step flow reactor platform: demonstration for partial oxidation synthesis of iron oxide nanoparticles. LAB ON A CHIP 2022; 23:115-124. [PMID: 36454245 DOI: 10.1039/d2lc00892k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the last decade flow reactors for material synthesis were firmly established, demonstrating advantageous operating conditions, reproducible and scalable production via continuous operation, as well as high-throughput screening of synthetic conditions. Reactor fouling, however, often restricts flow chemistry and the common fouling prevention via segmented flow comes at the cost of inflexibility. Often, the difficulty of feeding reagents into liquid segments (droplets or slugs) constrains flow syntheses using segmented flow to simple synthetic protocols with a single reagent addition step prior or during segmentation. Hence, the translation of fouling prone syntheses requiring multiple reagent addition steps into flow remains challenging. This work presents a modular flow reactor platform overcoming this bottleneck by fully exploiting the potential of three-phase (gas-liquid-liquid) segmented flow to supply reagents after segmentation, hence facilitating fouling free multi-step flow syntheses. The reactor design and materials selection address the operation challenges inherent to gas-liquid-liquid flow and reagent addition into segments allowing for a wide range of flow rates, flow ratios, temperatures, and use of continuous phases (no perfluorinated solvents needed). This "Lego®-like" reactor platform comprises elements for three-phase segmentation and sequential reagent addition into fluid segments, as well as temperature-controlled residence time modules that offer the flexibility required to translate even complex nanomaterial synthesis protocols to flow. To demonstrate the platform's versatility, we chose a fouling prone multi-step synthesis, i.e., a water-based partial oxidation synthesis of iron oxide nanoparticles. This synthesis required I) the precipitation of ferrous hydroxides, II) the addition of an oxidation agent, III) a temperature treatment to initiate magnetite/maghemite formation, and IV) the addition of citric acid to increase the colloidal stability. The platform facilitated the synthesis of colloidally stable magnetic nanoparticles reproducibly at well-controlled synthetic conditions and prevented fouling using heptane as continuous phase. The biocompatible particles showed excellent heating abilities in alternating magnetic fields (ILP values >3 nH m2 kgFe-1), hence, their potential for magnetic hyperthermia cancer treatment. The platform allowed for long term operation, as well as screening of synthetic conditions to tune particle properties. This was demonstrated via the addition of tetraethylenepentamine, confirming its potential to control particle morphology. Such a versatile reactor platform makes it possible to translate even complex syntheses into flow, opening up new opportunities for material synthesis.
Collapse
Affiliation(s)
- Maximilian O Besenhard
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Sayan Pal
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Liudmyla Storozhuk
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Simon Dawes
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Laura Norfolk
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Sarah Staniland
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
5
|
Gérardy R, Nambiar AMK, Hart T, Mahesh PT, Jensen KF. Photochemical Synthesis of the Bioactive Fragment of Salbutamol and Derivatives in a Self-Optimizing Flow Chemistry Platform. Chemistry 2022; 28:e202201385. [PMID: 35570196 PMCID: PMC9400967 DOI: 10.1002/chem.202201385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 11/29/2022]
Abstract
The implementation of self-optimizing flow reactors has been mostly limited to model reactions or known synthesis routes. In this work, a self-optimizing flow photochemistry platform is used to develop an original synthesis of the bioactive fragment of Salbutamol and derivatives. The key photochemical steps for the construction of the aryl vicinyl amino alcohol moiety consist of a C-C bond forming reaction followed by an unprecedented, high yielding (>80 %), benzylic oxidative cyclization.
Collapse
Affiliation(s)
- Romaric Gérardy
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA 02139USA
| | - Anirudh M. K. Nambiar
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA 02139USA
| | - Travis Hart
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA 02139USA
| | - Prajwal T. Mahesh
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA 02139USA
| | - Klavs F. Jensen
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA 02139USA
| |
Collapse
|
6
|
Ralbovsky NM, Smith JP. Process analytical technology and its recent applications for asymmetric synthesis. Talanta 2022; 252:123787. [DOI: 10.1016/j.talanta.2022.123787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
7
|
Ziegenbalg D, Pannwitz A, Rau S, Dietzek‐Ivanšić B, Streb C. Comparative Evaluation of Light-Driven Catalysis: A Framework for Standardized Reporting of Data. Angew Chem Int Ed Engl 2022; 61:e202114106. [PMID: 35698245 PMCID: PMC9401044 DOI: 10.1002/anie.202114106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 01/05/2023]
Abstract
Light-driven homogeneous and heterogeneous catalysis require a complex interplay between light absorption, charge separation, charge transfer, and catalytic turnover. Optical and irradiation parameters as well as reaction engineering aspects play major roles in controlling catalytic performance. This multitude of factors makes it difficult to objectively compare light-driven catalysts and provide an unbiased performance assessment. This Scientific Perspective highlights the importance of collecting and reporting experimental data in homogeneous and heterogeneous light-driven catalysis. A critical analysis of the benefits and limitations of the commonly used experimental indicators is provided. Data collection and reporting according to FAIR principles is discussed in the context of future automated data analysis. The authors propose a minimum dataset as a basis for unified collecting and reporting of experimental data in homogeneous and heterogeneous light-driven catalysis. The community is encouraged to support the future development of this parameter list through an open online repository.
Collapse
Affiliation(s)
- Dirk Ziegenbalg
- Institute of Chemical EngineeringUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Andrea Pannwitz
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Benjamin Dietzek‐Ivanšić
- Institute of Physical Chemistry and Center of Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Department Functional InterfacesLeibniz Institute of Photonic Technology Jena (IPHT)Albert-Einstein-Straße 907745JenaGermany
| | - Carsten Streb
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10-1455128MainzGermany
| |
Collapse
|
8
|
Ziegenbalg D, Pannwitz A, Rau S, Dietzek‐Ivanšić B, Streb C. Vergleichende Evaluierung lichtgetriebener Katalyse: Ein Rahmenkonzept für das standardisierte Berichten von Daten**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dirk Ziegenbalg
- Institut für Chemieingenieurwesen Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Andrea Pannwitz
- Institut für Anorganische Chemie I Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Sven Rau
- Institut für Anorganische Chemie I Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Benjamin Dietzek‐Ivanšić
- Institut für Physikalische Chemie und Center of Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich-Schiller-Universität Jena Helmholtzweg 4 07743 Jena Deutschland
- Department Funktionale Grenzflächen Leibniz-Institut für Photonische Technologien Jena (IPHT) Albert-Einstein-Straße 9 07745 Jena Deutschland
| | - Carsten Streb
- Institut für Anorganische Chemie I Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
9
|
Wu S, Kaur J, Karl TA, Tian X, Barham JP. Synthetic Molecular Photoelectrochemistry: New Frontiers in Synthetic Applications, Mechanistic Insights and Scalability. Angew Chem Int Ed Engl 2022; 61:e202107811. [PMID: 34478188 PMCID: PMC9303540 DOI: 10.1002/anie.202107811] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/11/2022]
Abstract
Synthetic photoelectrochemistry (PEC) is receiving increasing attention as a new frontier for the generation and handling of reactive intermediates. PEC permits selective single-electron transfer (SET) reactions in a much greener way and broadens the redox window of possible transformations. Herein, the most recent contributions are reviewed, demonstrating exciting new opportunities, namely, the combination of PEC with other reactivity paradigms (hydrogen-atom transfer, radical polar crossover, energy transfer sensitization), scalability up to multigram scale, novel selectivities in SET super-oxidations/reductions and the importance of precomplexation to temporally enable excited radical ion catalysis.
Collapse
Affiliation(s)
- Shangze Wu
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Jaspreet Kaur
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Tobias A. Karl
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Xianhai Tian
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Joshua P. Barham
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| |
Collapse
|
10
|
Wu S, Kaur J, Karl TA, Tian X, Barham JP. Synthetische molekulare Photoelektrochemie: neue synthetische Anwendungen, mechanistische Einblicke und Möglichkeiten zur Skalierung. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shangze Wu
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Jaspreet Kaur
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Tobias A. Karl
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Xianhai Tian
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| | - Joshua P. Barham
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Deutschland
| |
Collapse
|
11
|
Sacher S, Castillo I, Rehrl J, Sagmeister P, Lebl R, Kruisz J, Celikovic S, Sipek M, Williams JD, Kirschneck D, Kappe CO, Horn M. Automated and continuous synthesis of drug substances. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.10.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Sagandira CR, Nqeketo S, Mhlana K, Sonti T, Gaqa S, Watts P. Towards 4th industrial revolution efficient and sustainable continuous flow manufacturing of active pharmaceutical ingredients. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00483b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The convergence of end-to-end continuous flow synthesis with downstream processing, process analytical technology (PAT), artificial intelligence (AI), machine learning and automation in ensuring improved accessibility of quality medicines on demand.
Collapse
Affiliation(s)
| | - Sinazo Nqeketo
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| | - Kanyisile Mhlana
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| | - Thembela Sonti
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| | - Sibongiseni Gaqa
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| | - Paul Watts
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| |
Collapse
|
13
|
Bornemann‐Pfeiffer M, Wolf J, Meyer K, Kern S, Angelone D, Leonov A, Cronin L, Emmerling F. Standardisierung und Kontrolle von Grignard‐Reaktionen mittels Online‐NMR in einer universellen chemischen Syntheseplattform. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Martin Bornemann‐Pfeiffer
- Bundesanstalt für Materialforschung und -prüfung Richard-Willstätter-Straße 11 12489 Berlin Deutschland
- Chair of Chemical and Process Engineering Technische Universität Berlin Marchstr. 23 10587 Berlin Germany
| | - Jakob Wolf
- Bundesanstalt für Materialforschung und -prüfung Richard-Willstätter-Straße 11 12489 Berlin Deutschland
| | - Klas Meyer
- Bundesanstalt für Materialforschung und -prüfung Richard-Willstätter-Straße 11 12489 Berlin Deutschland
| | - Simon Kern
- S-PACT GmbH Burtscheiderstr. 1 52064 Aachen Deutschland
| | - Davide Angelone
- School of Chemistry University of Glasgow Glasgow G12 8QQ UK
| | - Artem Leonov
- School of Chemistry University of Glasgow Glasgow G12 8QQ UK
| | - Leroy Cronin
- School of Chemistry University of Glasgow Glasgow G12 8QQ UK
| | - Franziska Emmerling
- Bundesanstalt für Materialforschung und -prüfung Richard-Willstätter-Straße 11 12489 Berlin Deutschland
| |
Collapse
|
14
|
Bornemann‐Pfeiffer M, Wolf J, Meyer K, Kern S, Angelone D, Leonov A, Cronin L, Emmerling F. Standardization and Control of Grignard Reactions in a Universal Chemical Synthesis Machine using online NMR. Angew Chem Int Ed Engl 2021; 60:23202-23206. [PMID: 34278673 PMCID: PMC8597166 DOI: 10.1002/anie.202106323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 11/17/2022]
Abstract
A big problem with the chemistry literature is that it is not standardized with respect to precise operational parameters, and real time corrections are hard to make without expert knowledge. This lack of context means difficult reproducibility because many steps are ambiguous, and hence depend on tacit knowledge. Here we present the integration of online NMR into an automated chemical synthesis machine (CSM aka. "Chemputer" which is capable of small-molecule synthesis using a universal programming language) to allow automated analysis and adjustment of reactions on the fly. The system was validated and benchmarked by using Grignard reactions which were chosen due to their importance in synthesis. The system was monitored in real time using online-NMR, and spectra were measured continuously during the reactions. This shows that the synthesis being done in the Chemputer can be dynamically controlled in response to feedback optimizing the reaction conditions according to the user requirements.
Collapse
Affiliation(s)
- Martin Bornemann‐Pfeiffer
- Department 1: Analytical Chemistry, Reference MaterialsBundesanstalt für Materialforschung und -prüfungRichard-Willstätter-Straße 1112489BerlinGermany
- Chair of Chemical and Process EngineeringTechnische Universität BerlinMarchstr. 2310587BerlinGermany
| | - Jakob Wolf
- Department 1: Analytical Chemistry, Reference MaterialsBundesanstalt für Materialforschung und -prüfungRichard-Willstätter-Straße 1112489BerlinGermany
| | - Klas Meyer
- Department 1: Analytical Chemistry, Reference MaterialsBundesanstalt für Materialforschung und -prüfungRichard-Willstätter-Straße 1112489BerlinGermany
| | - Simon Kern
- S-PACT GmbHBurtscheiderstr. 152064AachenGermany
| | | | - Artem Leonov
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | - Leroy Cronin
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | - Franziska Emmerling
- Department 1: Analytical Chemistry, Reference MaterialsBundesanstalt für Materialforschung und -prüfungRichard-Willstätter-Straße 1112489BerlinGermany
| |
Collapse
|
15
|
Morin MA, Zhang W(P, Mallik D, Organ MG. Sampling and Analysis in Flow: The Keys to Smarter, More Controllable, and Sustainable Fine‐Chemical Manufacturing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mathieu A. Morin
- Department of Chemistry and Biomolecular Sciences Centre for Catalysis Research and Innovation (CCRI) University of Ottawa 10 Marie Curie Ottawa ON K1N 6N5 Canada
- Department of Chemistry Carleton University 203 Steacie Building, 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada
| | - Wenyao (Peter) Zhang
- Department of Chemistry York University 4700 Keele Street Toronto ON M3J 1P3 Canada
| | - Debasis Mallik
- Department of Chemistry and Biomolecular Sciences Centre for Catalysis Research and Innovation (CCRI) University of Ottawa 10 Marie Curie Ottawa ON K1N 6N5 Canada
| | - Michael G. Organ
- Department of Chemistry and Biomolecular Sciences Centre for Catalysis Research and Innovation (CCRI) University of Ottawa 10 Marie Curie Ottawa ON K1N 6N5 Canada
- Department of Chemistry York University 4700 Keele Street Toronto ON M3J 1P3 Canada
| |
Collapse
|
16
|
Morin MA, Zhang WP, Mallik D, Organ MG. Sampling and Analysis in Flow: The Keys to Smarter, More Controllable, and Sustainable Fine-Chemical Manufacturing. Angew Chem Int Ed Engl 2021; 60:20606-20626. [PMID: 33811800 DOI: 10.1002/anie.202102009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Indexed: 11/08/2022]
Abstract
Process analytical technology (PAT) is a system designed to help chemists better understand and control manufacturing processes. PAT systems operate through the combination of analytical devices, reactor control elements, and mathematical models to ensure the quality of the final product through a quality by design (QbD) approach. The expansion of continuous manufacturing in the pharmaceutical and fine-chemical industry requires the development of PAT tools suitable for continuous operation in the environment of flow reactors. This requires innovative approaches to sampling and analysis from flowing media to maintain the integrity of the reactor content and the analyte of interest. The following Review discusses examples of PAT tools implemented in flow chemistry for the preparation of small organic molecules, and applications of self-optimization tools.
Collapse
Affiliation(s)
- Mathieu A Morin
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada.,Department of Chemistry, Carleton University, 203 Steacie Building, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Wenyao Peter Zhang
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Debasis Mallik
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Michael G Organ
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada.,Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|