1
|
Gu R, Lambertsen Larsen K, Wang A, Tan J. Approaching Dynamic Behaviors of Life through Systems Chemistry. Chemistry 2025; 31:e202403083. [PMID: 39485372 DOI: 10.1002/chem.202403083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/03/2024]
Abstract
The intricate interplay of metabolic reactions and molecular assembly in living systems enables spatiotemporally organization and gives rise to diverse dynamic behaviors that characterize life. Over the last decades, research efforts have increasingly focused on replicating the remarkable properties and characteristics of living systems, driving the rapid growth of systems chemistry. This young discipline which generally studies interacting molecular networks and emergent system-level properties, behaviors, and functions, offers new concepts and tools to tackle the complexity of life. In this review paper, we have explored seminal research and recent advancements in recreating dynamic behaviors of life with systems chemistry. We believe that the recreation of the dynamic behaviors of life through systems chemistry would set the initial steps to obtain synthetic life de novo.
Collapse
Affiliation(s)
- Ruirui Gu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Kim Lambertsen Larsen
- Department of Chemistry and Bioscience, Section of Chemistry Science and Engineering, Aalborg University, Fredrik Bajers Vej 7H, Aalborg Ø, Denmark
| | - Ali Wang
- Department of Chemistry, Section of Biological Chemistry, University of Copenhagen, Universitetsparken 5, København Ø, Denmark
| | - Junjun Tan
- Department of Chemistry, Section of Biological Chemistry, University of Copenhagen, Universitetsparken 5, København Ø, Denmark
| |
Collapse
|
2
|
Fielden SDP. Kinetically Controlled and Nonequilibrium Assembly of Block Copolymers in Solution. J Am Chem Soc 2024; 146:18781-18796. [PMID: 38967256 PMCID: PMC11258791 DOI: 10.1021/jacs.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Covalent polymers are versatile macromolecules that have found widespread use in society. Contemporary methods of polymerization have made it possible to construct sequence polymers, including block copolymers, with high precision. Such copolymers assemble in solution when the blocks have differing solubilities. This produces nano- and microparticles of various shapes and sizes. While it is straightforward to draw an analogy between such amphiphilic block copolymers and phospholipids, these two classes of molecules show quite different assembly characteristics. In particular, block copolymers often assemble under kinetic control, thus producing nonequilibrium structures. This leads to a rich variety of behaviors being observed in block copolymer assembly, such as pathway dependence (e.g., thermal history), nonergodicity and responsiveness. The dynamics of polymer assemblies can be readily controlled using changes in environmental conditions and/or integrating functional groups situated on polymers with external chemical reactions. This perspective highlights that kinetic control is both pervasive and a useful attribute in the mechanics of block copolymer assembly. Recent examples are highlighted in order to show that toggling between static and dynamic behavior can be used to generate, manipulate and dismantle nonequilibrium states. New methods to control the kinetics of block copolymer assembly will provide endless unanticipated applications in materials science, biomimicry and medicine.
Collapse
Affiliation(s)
- Stephen D. P. Fielden
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| |
Collapse
|
3
|
Borsley S, Leigh DA, Roberts BMW. Molecular Ratchets and Kinetic Asymmetry: Giving Chemistry Direction. Angew Chem Int Ed Engl 2024; 63:e202400495. [PMID: 38568047 DOI: 10.1002/anie.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 05/03/2024]
Abstract
Over the last two decades ratchet mechanisms have transformed the understanding and design of stochastic molecular systems-biological, chemical and physical-in a move away from the mechanical macroscopic analogies that dominated thinking regarding molecular dynamics in the 1990s and early 2000s (e.g. pistons, springs, etc), to the more scale-relevant concepts that underpin out-of-equilibrium research in the molecular sciences today. Ratcheting has established molecular nanotechnology as a research frontier for energy transduction and metabolism, and has enabled the reverse engineering of biomolecular machinery, delivering insights into how molecules 'walk' and track-based synthesisers operate, how the acceleration of chemical reactions enables energy to be transduced by catalysts (both motor proteins and synthetic catalysts), and how dynamic systems can be driven away from equilibrium through catalysis. The recognition of molecular ratchet mechanisms in biology, and their invention in synthetic systems, is proving significant in areas as diverse as supramolecular chemistry, systems chemistry, dynamic covalent chemistry, DNA nanotechnology, polymer and materials science, molecular biology, heterogeneous catalysis, endergonic synthesis, the origin of life, and many other branches of chemical science. Put simply, ratchet mechanisms give chemistry direction. Kinetic asymmetry, the key feature of ratcheting, is the dynamic counterpart of structural asymmetry (i.e. chirality). Given the ubiquity of ratchet mechanisms in endergonic chemical processes in biology, and their significance for behaviour and function from systems to synthesis, it is surely just as fundamentally important. This Review charts the recognition, invention and development of molecular ratchets, focussing particularly on the role for which they were originally envisaged in chemistry, as design elements for molecular machinery. Different kinetically asymmetric systems are compared, and the consequences of their dynamic behaviour discussed. These archetypal examples demonstrate how chemical systems can be driven inexorably away from equilibrium, rather than relax towards it.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - David A Leigh
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Benjamin M W Roberts
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| |
Collapse
|
4
|
Wang Y, Yan Q. CO 2 -Fueled Transient Breathing Nanogels that Couple Nonequilibrium Catalytic Polymerization. Angew Chem Int Ed Engl 2023; 62:e202217001. [PMID: 36738302 DOI: 10.1002/anie.202217001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
Here we present a "breathing" nanogel that is fueled by CO2 gas to perform temporally programmable catalytic polymerization. The nanogel is composed of common frustrated Lewis pair polymers (FLPs). Dynamic CO2 -FLP gas-bridging bonds endow the nanogel with a transient volume contraction, and the resulting proximal effect of bound FLPs unlocks its catalytic capacity toward CO2 . Reverse gas depletion via a CO2 -participated polymerization can induce a reverse nanogel expansion, which shuts down the catalytic activity. Control of external factors (fuel level, temperature or additives) can regulate the breathing period, amplitude and lifecycle, so as to affect the catalytic polymerization. Moreover, editing the nanogel breathing procedure can sequentially evoke the copolymerization of CO2 with different epoxide monomers preloaded therein, which allows to obtain block-tunable copolycarbonates that are unachievable by other methods. This synthetic dissipative system would be function as a prototype of gas-driven nanosynthesizer.
Collapse
Affiliation(s)
- Yixin Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
5
|
Hossain MM, Jayalath IM, Baral R, Hartley CS. Carbodiimide‐Induced Formation of Transient Polyether Cages**. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Isuru M. Jayalath
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| | - Renuka Baral
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| | - C. Scott Hartley
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| |
Collapse
|
6
|
Del Giudice D, Valentini M, Melchiorre G, Spatola E, Di Stefano S. Dissipative Dynamic Covalent Chemistry (DDCvC) Based on the Transimination Reaction. Chemistry 2022; 28:e202200685. [DOI: 10.1002/chem.202200685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Daniele Del Giudice
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Matteo Valentini
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Gabriele Melchiorre
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Emanuele Spatola
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| |
Collapse
|
7
|
Liu B, Wu J, Geerts M, Markovitch O, Pappas CG, Liu K, Otto S. Out-of-Equilibrium Self-Replication Allows Selection for Dynamic Kinetic Stability in a System of Competing Replicators. Angew Chem Int Ed Engl 2022; 61:e202117605. [PMID: 35179808 PMCID: PMC9314957 DOI: 10.1002/anie.202117605] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Indexed: 12/16/2022]
Abstract
Among the key characteristics of living systems are their ability to self-replicate and the fact that they exist in an open system away from equilibrium. Herein, we show how the outcome of the competition between two self-replicators, differing in size and building block composition, is different depending on whether the experiments are conducted in a closed vial or in an open and out-of-equilibrium replication-destruction regime. In the closed system, the slower replicator eventually prevails over the faster competitor. In a replication-destruction regime, implemented through a flow system, the outcome of the competition is reversed and the faster replicator dominates. The interpretation of the experimental observations is supported by a mass-action-kinetics model. These results represent one of the few experimental manifestations of selection among competing self-replicators based on dynamic kinetic stability and pave the way towards Darwinian evolution of abiotic systems.
Collapse
Affiliation(s)
- Bin Liu
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Juntian Wu
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Marc Geerts
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Omer Markovitch
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Origins CenterUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
- Groningen Institute for Evolutionary Life SciencesUniversity of Groningen9747 AGGroningenThe Netherlands
| | - Charalampos G. Pappas
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Kai Liu
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Sijbren Otto
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
8
|
Schaeffer G, Eleveld MJ, Ottelé J, Kroon PC, Frederix PWJM, Yang S, Otto S. Stochastic Emergence of Two Distinct Self-Replicators from a Dynamic Combinatorial Library. J Am Chem Soc 2022; 144:6291-6297. [PMID: 35357150 PMCID: PMC9011346 DOI: 10.1021/jacs.1c12591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/30/2022]
Abstract
Unraveling how chemistry can give rise to biology is one of the greatest challenges of contemporary science. Achieving life-like properties in chemical systems is therefore a popular topic of research. Synthetic chemical systems are usually deterministic: the outcome is determined by the experimental conditions. In contrast, many phenomena that occur in nature are not deterministic but caused by random fluctuations (stochastic). Here, we report on how, from a mixture of two synthetic molecules, two different self-replicators emerge in a stochastic fashion. Under the same experimental conditions, the two self-replicators are formed in various ratios over several repeats of the experiment. We show that this variation is caused by a stochastic nucleation process and that this stochasticity is more pronounced close to a phase boundary. While stochastic nucleation processes are common in crystal growth and chiral symmetry breaking, it is unprecedented for systems of synthetic self-replicators.
Collapse
Affiliation(s)
- Gaël Schaeffer
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marcel J. Eleveld
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jim Ottelé
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter C. Kroon
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Pim W. J. M. Frederix
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Shuo Yang
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Liu B, Wu J, Geerts M, Markovitch O, Pappas CG, Liu K, Otto S. Out‐of‐equilibrium self‐replication allows selection for dynamic kinetic stability in a system of competing replicators. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bin Liu
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Juntian Wu
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Marc Geerts
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Omer Markovitch
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Charalampos G. Pappas
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Kai Liu
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Sijbren Otto
- Stratingh Institute University of Groningen Centre for Systems Chemistry Nijenborgh 4 9747AG Groningen NETHERLANDS
| |
Collapse
|