1
|
Xiang F, Zhang H, Yang Y, Li L, Que Z, Chen L, Yuan Z, Chen S, Yao Z, Fu J, Xiang S, Chen B, Zhang Z. Tetranuclear Cu II Cluster as the Ten Node Building Unit for the Construction of a Metal-Organic Framework for Efficient C 2 H 2 /CO 2 Separation. Angew Chem Int Ed Engl 2023; 62:e202300638. [PMID: 36726350 DOI: 10.1002/anie.202300638] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023]
Abstract
Rational design of high nuclear copper cluster-based metal-organic frameworks has not been established yet. Herein, we report a novel MOF (FJU-112) with the ten-connected tetranuclear copper cluster [Cu4 (PO3 )2 (μ2 -H2 O)2 (CO2 )4 ] as the node which was capped by the deprotonated organic ligand of H4 L (3,5-Dicarboxyphenylphosphonic acid). With BPE (1,2-Bis(4-pyridyl)ethane) as the pore partitioner, the pore spaces in the structure of FJU-112 were divided into several smaller cages and smaller windows for efficient gas adsorption and separation. FJU-112 exhibits a high separation performance for the C2 H2 /CO2 separation, which were established by the temperature-dependent sorption isotherms and further confirmed by the lab-scale dynamic breakthrough experiments. The grand canonical Monte Carlo simulations (GCMC) studies show that its high C2 H2 /CO2 separation performance is contributed to the strong π-complexation interactions between the C2 H2 molecules and framework pore surfaces, leading to its more C2 H2 uptakes over CO2 molecules.
Collapse
Affiliation(s)
- Fahui Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China.,Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Lu Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhenni Que
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Liangji Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Shimin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zizhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Jianwei Fu
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
2
|
Fonseca J, Meng L, Imaz I, Maspoch D. Self-assembly of colloidal metal-organic framework (MOF) particles. Chem Soc Rev 2023; 52:2528-2543. [PMID: 36930224 DOI: 10.1039/d2cs00858k] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Self-assembly of colloidal particles into ordered superstructures enables the development of novel advanced materials for diverse applications such as photonics, electronics, sensing, energy conversion, energy storage, diagnosis, drug or gene delivery, and catalysis. Recently, polyhedral metal-organic framework (MOF) particles have been proposed as promising colloidal particles to form ordered superstructures, based on their colloidal stability, size-tunability, rich polyhedral shapes, porosity and multifunctionality. In this review, we present a comprehensive overview of strategies for the self-assembly of colloidal MOF particles into ordered superstructures of different dimensionalities, highlighting some of their properties and applications, and sharing thoughts on the self-assembly of MOF particles.
Collapse
Affiliation(s)
- Javier Fonseca
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain. .,Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lingxin Meng
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain. .,Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain. .,Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain. .,Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,ICREA, Pg. Lluıs Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
3
|
Wang JW, Fan SC, Li HP, Bu X, Xue YY, Zhai QG. De-Linker-Enabled Exceptional Volumetric Acetylene Storage Capacity and Benchmark C 2 H 2 /C 2 H 4 and C 2 H 2 /CO 2 Separations in Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202217839. [PMID: 36631412 DOI: 10.1002/anie.202217839] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
An ideal adsorbent for separation requires optimizing both storage capacity and selectivity, but maximizing both or achieving a desired balance remain challenging. Herein, a de-linker strategy is proposed to address this issue for metal-organic frameworks (MOFs). Broadly speaking, the de-linker idea targets a class of materials that may be viewed as being intermediate between zeolites and MOFs. Its feasibility is shown here by a series of ultra-microporous MOFs (SNNU-98-M, M=Mn, Co, Ni, Zn). SNNU-98 exhibit high volumetric C2 H2 uptake capacity under low and ambient pressures (175.3 cm3 cm-3 @ 0.1 bar, 222.9 cm3 cm-3 @ 1 bar, 298 K), as well as extraordinary selectivity (2405.7 for C2 H2 /C2 H4 , 22.7 for C2 H2 /CO2 ). Remarkably, SNNU-98-Mn can efficiently separate C2 H2 from C2 H2 /CO2 and C2 H2 /C2 H4 mixtures with a benchmark C2 H2 /C2 H4 (1/99) breakthrough time of 2325 min g-1 , and produce 99.9999 % C2 H4 with a productivity up to 64.6 mmol g-1 , surpassing values of reported MOF adsorbents.
Collapse
Affiliation(s)
- Jia-Wen Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Shu-Cong Fan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Hai-Peng Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach, CA-90840, USA
| | - Ying-Ying Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| |
Collapse
|
4
|
Tian J, Chen Q, Jiang F, Yuan D, Hong M. Optimizing Acetylene Sorption through Induced-fit Transformations in a Chemically Stable Microporous Framework. Angew Chem Int Ed Engl 2023; 62:e202215253. [PMID: 36524616 DOI: 10.1002/anie.202215253] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Developing practical storage technologies for acetylene (C2 H2 ) is important but challenging because C2 H2 is useful but explosive. Here, a novel metal-organic framework (MOF) (FJI-H36) with adaptive channels was prepared. It can effectively capture C2 H2 (159.9 cm3 cm-3 ) at 1 atm and 298 K, possessing a record-high storage density (561 g L-1 ) but a very low adsorption enthalpy (28 kJ mol-1 ) among all the reported MOFs. Structural analyses show that such excellent adsorption performance comes from the synergism of active sites, flexible framework, and matched pores; where the adsorbed-C2 H2 can drive FJI-H36 to undergo induced-fit transformations step by step, including deformation/reconstruction of channels, contraction of pores, and transformation of active sites, finally leading to dense packing of C2 H2 . Moreover, FJI-H36 has excellent chemical stability and recyclability, and can be prepared on a large scale, enabling it as a practical adsorbent for C2 H2 . This will provide a useful strategy for developing practical and efficient adsorbents for C2 H2 storage.
Collapse
Affiliation(s)
- Jindou Tian
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
5
|
Li H, Chen C, Di Z, Liu Y, Ji Z, Zou S, Wu M, Hong M. Rational Pore Design of a Cage-like Metal-Organic Framework for Efficient C 2H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52216-52222. [PMID: 36356232 DOI: 10.1021/acsami.2c17196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Considering the importance of C2H2 in industry, it is of great significance to develop porous materials for efficient C2H2/CO2 separation. Besides the high selectivity, the C2H2 adsorption capacity is another vital factor in C2H2/CO2 separation. However, the "trade-off" between these two factors is still perplexing. Rational pore design of metal-organic frameworks (MOFs) has been proven to be an effective way to solve the above problem. In this work, we have appropriately combined three kinds of strategies in the design of the MOF (FJI-H33), i.e., the introduction of open metal sites, construction of cage-like cavities, and adjustment of moderate pore size. As anticipated, FJI-H33 exhibits both outstanding C2H2 adsorption capacity and high C2H2/CO2 selectivity. At 298 K and 100 kPa, the C2H2 storage capacity of FJI-H33 is 154 cm3/g, while the CO2 uptake is only 80 cm3/g. The ideal adsorbed solution theory (IAST) selectivity of C2H2/CO2 (50:50) is calculated as high as 15.5 at 298 K. More importantly, the excellent practical separation performance was verified by breakthrough experiments. In addition, the calculation of adsorption sites and relevant energy by density functional theory (DFT) provides a good explanation for the excellent separation performance and pore design strategy.
Collapse
Affiliation(s)
- Hengbo Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cheng Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Zhengyi Di
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Yuanzheng Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Zhenyu Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shuixiang Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Mingyan Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| |
Collapse
|
6
|
Askari S, Khodaei MM, Jafarzadeh M, Mikaeili A. In-situ formation of Ag NPs on the ribonic γ-lactone-modified UiO-66-NH2: An effective catalyst for organic synthesis and antibacterial applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Shao K, Wen H, Liang C, Xiao X, Gu X, Chen B, Qian G, Li B. Engineering Supramolecular Binding Sites in a Chemically Stable Metal‐Organic Framework for Simultaneous High C
2
H
2
Storage and Separation. Angew Chem Int Ed Engl 2022; 61:e202211523. [DOI: 10.1002/anie.202211523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Kai Shao
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Hui‐Min Wen
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Cong‐Cong Liang
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xiaoyan Xiao
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xiao‐Wen Gu
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio TX 78249-0698 USA
| | - Guodong Qian
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Bin Li
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
8
|
Ma B, Li D, Zhu Q, Li Y, Ueda W, Zhang Z. A Zeolitic Octahedral Metal Oxide with Ultra‐Microporosity for Inverse CO
2
/C
2
H
2
Separation at High Temperature and Humidity. Angew Chem Int Ed Engl 2022; 61:e202209121. [DOI: 10.1002/anie.202209121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Baokai Ma
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
| | - Denan Li
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
| | - Qianqian Zhu
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
| | - Yanshuo Li
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
- Zhejiang Hymater New Materials Co., Ltd. Ningbo Zhejiang, 315034 P. R. China
| | - Wataru Ueda
- Faculty of Engineering Kanagawa University Rokkakubashi Kanagawa-ku, Yokohama-shi Kanagawa, 221-8686 Japan
| | - Zhenxin Zhang
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
| |
Collapse
|
9
|
Shao K, Wen HM, Liang CC, Xiao X, Gu XW, Chen B, Qian G, Li B. Engineering Supramolecular Binding Sites in a Chemically Stable Metal−Organic Framework for Simultaneous High C2H2 Storage and Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Shao
- Zhejiang University School of Materials Science and Engineering CHINA
| | - Hui-Min Wen
- Zhejiang University of Technology College of Chemical Engineering CHINA
| | - Cong-Cong Liang
- ZHEJIANG UNIVERSITY School of Materials Science and Engineering CHINA
| | - Xiaoyan Xiao
- Zhejiang University School of Materials Science and Engineering CHINA
| | - Xiao-Wen Gu
- Zhejiang University School of Materials Science and Engineering CHINA
| | - Banglin Chen
- University of Texas at San Antonio Department of Chemistry One UTSA Circle 78249 San Antonio UNITED STATES
| | - Guodong Qian
- Zhejiang University School of Materials Science and Engineering CHINA
| | - Bin Li
- Zhejiang University School of Materials Science and Engineering CHINA
| |
Collapse
|
10
|
Liu L, Wu S, Li D, Li Y, Zhang H, Li L, Jin S, Yao Z. Partial Linker Substitution Strategy to Construct a Quaternary HKUST-like MOF for Efficient Acetylene Storage and Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36882-36889. [PMID: 35920596 DOI: 10.1021/acsami.2c10346] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multicomponent metal-organic frameworks (MOFs) have received much attention as emerging materials capable of precisely programing exquisite structures and specific functions. Here, we applied a partial linker substitution strategy to compile an HKUST-1-like quaternary MOF by introducing a bifunctional ligand into the well-known HKUST-1 structure. FUT-1, a new HKUST-like tbo topology MOF, was assembled with paddlewheel [Cu2(COO)4], triangular metallocycle pyrazole cluster Cu3(μ3-OH) (NN)3 building blocks, and two distinct linkers. FUT-1 exhibited good mechanical stability, water stability, and chemical stability (pH = 3-12) in aqueous solutions. Moreover, the porous environments created by this multicomponent primitive endow FUT-1 with high C2H2 storage and significantly selective separation performance of C2H2/CO2. Dynamic breakthrough experiments and ideal adsorbed solution theory calculations further demonstrate that FUT-1 can selectively capture C2H2 from C2H2/CO2 mixtures under ambient conditions. Based on grand canonical Monte Carlo simulations, the high C2H2 separation performance of FUT-1 is attributed to the π-complex formed between the C2H2 molecule and the trinuclear metallocycle clusters on the wall, which provides stronger affinity for C2H2 recognition than the CO2 molecule.
Collapse
Affiliation(s)
- Lizhen Liu
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, Fujian, P. R. China
| | - Susu Wu
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, Fujian, P. R. China
| | - Dandan Li
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, Fujian, P. R. China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Lu Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Shaowei Jin
- National Supercomputing Center in Shenzhen, Shenzhen 518000, P. R. China
| | - Zizhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
| |
Collapse
|
11
|
Yang Y, Zhang H, Yuan Z, Wang J, Xiang F, Chen L, Wei F, Xiang S, Chen B, Zhang Z. An Ultramicroporous Hydrogen‐Bonded Organic Framework Exhibiting High C
2
H
2
/CO
2
Separation. Angew Chem Int Ed Engl 2022; 61:e202207579. [DOI: 10.1002/anie.202207579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| | - Jia‐Qi Wang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| | - Fahui Xiang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| | - Liangji Chen
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| | - Fangfang Wei
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio TX 78249–0698 USA
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| |
Collapse
|
12
|
Ma B, Li D, Zhu Q, Li Y, Ueda W, Zhang Z. A Zeolitic Octahedral Metal Oxide with Ultra‐Microporosity for Inverse CO2/C2H2 Separation at High Temperature and Humidity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Baokai Ma
- Ningbo University School of Materials Science and Chemical Engineering CHINA
| | - Denan Li
- Ningbo University School of Materials Science and Chemical Engineering CHINA
| | - Qianqian Zhu
- Ningbo University School of Materials Science and Chemical Engineering CHINA
| | - Yanshuo Li
- Ningbo University School of Materials Science and Chemical Engineering CHINA
| | - Wataru Ueda
- Kanagawa University: Kanagawa Daigaku Faculty of Engineering JAPAN
| | - Zhenxin Zhang
- Ningbo University School of Material Science and Chemical Engineering Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686, Japan. 315211 Ningbo CHINA
| |
Collapse
|
13
|
Yang Y, Zhang H, Yuan Z, Wang JQ, Xiang F, Chen L, Wei F, Xiang S, Chen B, Zhang Z. An Ultramicroporous Hydrogen‐Bonded Organic Framework Exhibiting High C2H2/CO2 Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yisi Yang
- Fujian Normal University College of Chemistry and Materials Science CHINA
| | - Hao Zhang
- Fujian Normal University College of Chemistry and Materials Science CHINA
| | - Zhen Yuan
- Fujian Normal University College of Chemistry and Materials Science CHINA
| | - Jia-Qi Wang
- Fujian Normal University College of Chemistry and Materials Science CHINA
| | - Fahui Xiang
- Fujian Normal University College of Chemistry and Materials Science CHINA
| | - Liangji Chen
- Fujian Normal University College of Chemistry and Materials Science CHINA
| | - Fangfang Wei
- Fujian Normal University College of Chemistry and Materials Science CHINA
| | - Shengchang Xiang
- Fujian Normal University College of Chemistry and Materials Science CHINA
| | - Banglin Chen
- The University of Texas at San Antonio Department of Chemistry CHINA
| | - Zhangjing Zhang
- Fujian Normal University College of Chemistry and Materials Science No.8 Shangsan Road, Cangshan District 350007 Fuzhou CHINA
| |
Collapse
|
14
|
Jiang Y, Hu J, Wang L, Sun W, Xu N, Krishna R, Duttwyler S, Cui X, Xing H, Zhang Y. Comprehensive Pore Tuning in an Ultrastable Fluorinated Anion Cross-Linked Cage-Like MOF for Simultaneous Benchmark Propyne Recovery and Propylene Purification. Angew Chem Int Ed Engl 2022; 61:e202200947. [PMID: 35199908 DOI: 10.1002/anie.202200947] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/03/2023]
Abstract
Propyne/propylene (C3 H4 /C3 H6 ) separation is an important but challenging industrial process to produce polymer-grade C3 H6 and recover high-purity C3 H4 . Herein, we report an ultrastable TiF6 2- anion cross-linked metal-organic framework (ZNU-2) with precisely controlled pore size, shape and functionality for benchmark C3 H4 storage (3.9/7.7 mmol g-1 at 0.01/1.0 bar and 298 K) and record high C3 H4 /C3 H6 (10/90) separation potential (31.0 mol kg-1 ). The remarkable C3 H4 /C3 H6 (1/99, 10/90, 50/50) separation performance was fully demonstrated by simulated and experimental breakthroughs under various conditions with excellent recyclability and high productivity (42 mol kg-1 ) of polymer-grade C3 H6 from a 1/99 C3 H4 /C3 H6 mixture. A modelling study revealed that the symmetrical spatial distribution of six TiF6 2- on the icosahedral cage surface provides two distinct binding sites for C3 H4 adsorption: one serves as a tailored single C3 H4 molecule trap and the other boosts C3 H4 accommodation by cooperative host-guest and guest-guest interactions.
Collapse
Affiliation(s)
- Yunjia Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Jianbo Hu
- Key laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Lingyao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Wanqi Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Nuo Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098, Amsterdam, The Netherlands
| | - Simon Duttwyler
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Xili Cui
- Key laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Huabin Xing
- Key laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, P.R. China
| |
Collapse
|
15
|
Niu Z, Fan Z, Pham T, Verma G, Forrest KA, Space B, Thallapally PK, Al-Enizi AM, Ma S. Self-Adjusting Metal-Organic Framework for Efficient Capture of Trace Xenon and Krypton. Angew Chem Int Ed Engl 2022; 61:e202117807. [PMID: 35020976 DOI: 10.1002/anie.202117807] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 11/11/2022]
Abstract
The capture of the xenon and krypton from nuclear reprocessing off-gas is essential to the treatment of radioactive waste. Although various porous materials have been employed to capture Xe and Kr, the development of high-performance adsorbents capable of trapping Xe/Kr at very low partial pressure as in the nuclear reprocessing off-gas conditions remains challenging. Herein, we report a self-adjusting metal-organic framework based on multiple weak binding interactions to capture trace Xe and Kr from the nuclear reprocessing off-gas. The self-adjusting behavior of ATC-Cu and its mechanism have been visualized by the in-situ single-crystal X-ray diffraction studies and theoretical calculations. The self-adjusting behavior endows ATC-Cu unprecedented uptake capacities of 2.65 and 0.52 mmol g-1 for Xe and Kr respectively at 0.1 bar and 298 K, as well as the record Xe capture capability from the nuclear reprocessing off-gas. Our work not only provides a benchmark Xe adsorbent but proposes a new route to construct smart materials for efficient separations.
Collapse
Affiliation(s)
- Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| | - Ziwen Fan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| | - Tony Pham
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Gaurav Verma
- Department of Chemistry, University of North Texas, Denton, TX 76201, USA
| | - Katherine A Forrest
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Brian Space
- Department of Chemistry, North Carolina State University, 2700 Stinson Dr., Raleigh, NC 27607, USA
| | - Praveen K Thallapally
- Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX 76201, USA
| |
Collapse
|
16
|
Jiang Y, Hu J, Wang L, Sun W, Xu N, Krishna R, Duttwyler S, Cui X, Xing H, Zhang Y. Comprehensive Pore Tuning in an Ultrastable Fluorinated Anion Cross‐Linked Cage‐Like MOF for Simultaneous Benchmark Propyne Recovery and Propylene Purification. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yunjia Jiang
- Zhejiang Normal University College of Chemistry and Life Science CHINA
| | - Jianbo Hu
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Lingyao Wang
- Zhejiang Normal University College of Chemistry and Life Science CHINA
| | - Wanqi Sun
- Zhejiang Normal University College of Chemistry and Life Science CHINA
| | - Nuo Xu
- Zhejiang Normal University College of Chemistry and Life Science CHINA
| | - Rajamani Krishna
- University of Amsterdam: Universiteit van Amsterdam Van't Hoff Institute for Molecular Sciences NETHERLANDS
| | | | - Xili Cui
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Huabin Xing
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Yuanbin Zhang
- Zhejiang Normal University College of Chemistry and Life Sciences Yingbin Road 688 321004 Jinhua CHINA
| |
Collapse
|
17
|
A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF). J Colloid Interface Sci 2022; 616:326-337. [PMID: 35219198 DOI: 10.1016/j.jcis.2022.02.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/27/2022]
Abstract
Conductive metal-organic frameworks can provide unique porous structures, large pore volumes, many catalytically active sites and high crystallinity, and so are becoming increasingly important and attractive as electrocatalytic materials. The present work synthesized nanorods of the conductive compound Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2) with a high degree of crystallinity from HITP ligands and Ni2+ ions. Screen-printed electrodes made with this material were employed to fabricate an enzyme-free sensor for the detection of ascorbic acid (AA). The sensor exhibited good catalytic activity during the electrocatalytic analysis of AA in alkaline media, attributed to the synergistic effect of highly active Ni-N4 catalytic sites in the nanorods, the two-dimensional superimposed honeycomb lattice of the Ni3(HITP)2, and the large specific surface area of this material. The latter property facilitated efficient electron transfer during catalytic oxidation. A portable electrochemical AA detection system was developed using Ni3(HITP)2 as the electrode material together with application-specific integrated circuits and a smartphone application with App. Good sensing performance was obtained, including a wide linear range (2-200 μM) with high sensitivity (0.814 μA μM-1 cm-2), and low detection limit (1 μM). This system can be used to monitor AA levels and trends in sweat to assess vitamin C intake as a part of personal health management.
Collapse
|
18
|
Kwon TG, Jun Kim B, Hyeon Jo O, Kang BG, Wook Kang S. Synthesis of surface-tuned polyacrylonitrile particles and its applications to CO2 separation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Jasim SA, Yasin G, Ansari MJ, Zarifi K. Density functional theory investigation of ozone gas uptake by a BeO nanoflake. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Due to importance of the gas uptake topic in environment and energy issues, this work was performed for investigating ozone (Oz) gas uptake by means of a beryllium oxide (BeO) nanoflake. To this aim, density functional theory (DFT) calculations and the quantum theory of atoms in molecules (QTAIM) analysis were performed. The monolayer BeO nanoflake was decorated by a HEME-like N4Fe region to prepare an interacting region towards the Oz uptake. Accordingly, three models were optimized based on configurations of Oz molecule relaxation at the BeO surface, in which two types of O ... Fe and O ... N interactions were observed. In this case, Oz3@BeO model was involved with two mentioned types of interactions and three occurred interaction between Oz and BeO making it as the strongest bimolecular formation model of Oz@BeO. Moreover, electronic molecular orbital features indicated that the models formations could be also related to sensor functions by variations of electric conductivity because of Oz gas uptake. As a consequence, the investigated BeO nanoflake of this work was proposed for employing in Oz gas uptake for different purposes.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | |
Collapse
|
20
|
Niu Z, Fan Z, Pham T, Verma G, Forrest KA, Space B, Thallapally PK, Al-Enizi AM, Ma S. Self‐Adjusting Metal‐Organic Framework for Efficient Capture of Trace Xenon and Krypton. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zheng Niu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Ziwen Fan
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Tony Pham
- University of South Florida Department of Chemistry UNITED STATES
| | - Gaurav Verma
- University of North Texas Department of Chemistry UNITED STATES
| | | | - Brian Space
- NC State: North Carolina State University Department of Chemistry UNITED STATES
| | - Praveen K. Thallapally
- PNNL: Pacific Northwest National Laboratory Physical and Computational Science Directorate UNITED STATES
| | | | - Shengqian Ma
- University of North Texas Department of Chemistry 1508 W Mulberry St 76201 Denton UNITED STATES
| |
Collapse
|
21
|
Cong Z, Zhu M, Zhang Y, Yao W, Kosinova M, Fedin VP, Wu S, Gao E. Three novel metal-organic frameworks with different coordination modes for trace detection of anthrax biomarkers. Dalton Trans 2021; 51:250-256. [PMID: 34881770 DOI: 10.1039/d1dt03760a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dipicolinic acid (DPA) is an anthrax biomarker. Its serious consequences make its detection a great need. In this paper, three novel metal-organic frameworks (MOFs) with different coordination modes were synthesized by a simple solvothermal method, which can be used as highly efficient fluorescence sensors for the highly selective and sensitive trace detection of DPA. MOFs 1-3 showed rapid responses to DPA (<30 s), and the limits of detection (LODs) were calculated to be 1.01 × 10-6 M-1 (MOF 1), 1.17 × 10-6 M-1 (MOF 2) and 2.07 × 10-6 M-1 (MOF 3). DPA detection based on MOFs 1-3 in fetal bovine serum is highly reliable based on the high recovery rates (90% to 115%). Hence, the three MOF-based sensors can be used in the real-time detection of DPA.
Collapse
Affiliation(s)
- Zhenzhong Cong
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, China
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, China
| | - Ying Zhang
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, China
| | - Wei Yao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, PR China.
| | - Marina Kosinova
- Nikolaev Institute of Inorganic Chemistry, Lavrentiev Avenue 3, Novosibirsk 630090, Russia
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry, Lavrentiev Avenue 3, Novosibirsk 630090, Russia
| | - Shuangyan Wu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, China
| | - Enjun Gao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, PR China. .,The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, China
| |
Collapse
|
22
|
Pei J, Wen H, Gu X, Qian Q, Yang Y, Cui Y, Li B, Chen B, Qian G. Dense Packing of Acetylene in a Stable and Low‐Cost Metal–Organic Framework for Efficient C
2
H
2
/CO
2
Separation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiyan Pei
- State Key Laboratory of Silicon Materials Department of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Hui‐Min Wen
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Xiao‐Wen Gu
- State Key Laboratory of Silicon Materials Department of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Quan‐Li Qian
- State Key Laboratory of Silicon Materials Department of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yu Yang
- State Key Laboratory of Silicon Materials Department of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials Department of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Bin Li
- State Key Laboratory of Silicon Materials Department of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio TX 78249-0698 USA
| | - Guodong Qian
- State Key Laboratory of Silicon Materials Department of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
23
|
Pei J, Wen HM, Gu XW, Qian QL, Yang Y, Cui Y, Li B, Chen B, Qian G. Dense Packing of Acetylene in a Stable and Low-Cost Metal-Organic Framework for Efficient C 2 H 2 /CO 2 Separation. Angew Chem Int Ed Engl 2021; 60:25068-25074. [PMID: 34529885 DOI: 10.1002/anie.202110820] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 11/11/2022]
Abstract
Porous materials for C2 H2 /CO2 separation mostly suffer from high regeneration energy, poor stability, or high cost that largely dampen their industrial implementation. A desired adsorbent should have an optimal balance between excellent separation performance, high stability, and low cost. We herein report a stable, low-cost, and easily scaled-up aluminum MOF (CAU-10-H) for highly efficient C2 H2 /CO2 separation. The suitable pore confinement in CAU-10-H can not only provide multipoint binding interactions with C2 H2 but also enable the dense packing of C2 H2 inside the pores. This material exhibits one of the highest C2 H2 storage densities of 392 g L-1 and highly selective adsorption of C2 H2 over CO2 at ambient conditions, achieved by a low C2 H2 adsorption enthalpy (27 kJ mol-1 ). Breakthrough experiments confirm its exceptional separation performance for C2 H2 /CO2 mixtures, affording both large C2 H2 uptake of 3.3 mmol g-1 and high separation factor of 3.4. CAU-10-H achieves the benchmark balance between separation performance, stability, and cost for C2 H2 /CO2 separation.
Collapse
Affiliation(s)
- Jiyan Pei
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiao-Wen Gu
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Quan-Li Qian
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yu Yang
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bin Li
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0698, USA
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
24
|
Wang L, Sun W, Zhang Y, Xu N, Krishna R, Hu J, Jiang Y, He Y, Xing H. Interpenetration Symmetry Control Within Ultramicroporous Robust Boron Cluster Hybrid MOFs for Benchmark Purification of Acetylene from Carbon Dioxide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lingyao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua 321004 P. R. China
| | - Wanqi Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua 321004 P. R. China
| | - Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua 321004 P. R. China
| | - Nuo Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua 321004 P. R. China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam Netherlands
| | - Jianbo Hu
- China Key laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Yunjia Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua 321004 P. R. China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua 321004 P. R. China
| | - Huabin Xing
- China Key laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
25
|
Shivanna M, Otake K, Song B, van Wyk LM, Yang Q, Kumar N, Feldmann WK, Pham T, Suepaul S, Space B, Barbour LJ, Kitagawa S, Zaworotko MJ. Benchmark Acetylene Binding Affinity and Separation through Induced Fit in a Flexible Hybrid Ultramicroporous Material. Angew Chem Int Ed Engl 2021; 60:20383-20390. [PMID: 34250717 PMCID: PMC8457195 DOI: 10.1002/anie.202106263] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 01/03/2023]
Abstract
Structural changes at the active site of an enzyme induced by binding to a substrate molecule can result in enhanced activity in biological systems. Herein, we report that the new hybrid ultramicroporous material sql-SIFSIX-bpe-Zn exhibits an induced fit binding mechanism when exposed to acetylene, C2 H2 . The resulting phase change affords exceptionally strong C2 H2 binding that in turn enables highly selective C2 H2 /C2 H4 and C2 H2 /CO2 separation demonstrated by dynamic breakthrough experiments. sql-SIFSIX-bpe-Zn was observed to exhibit at least four phases: as-synthesised (α); activated (β); and C2 H2 induced phases (β' and γ). sql-SIFSIX-bpe-Zn-β exhibited strong affinity for C2 H2 at ambient conditions as demonstrated by benchmark isosteric heat of adsorption (Qst ) of 67.5 kJ mol-1 validated through in situ pressure gradient differential scanning calorimetry (PG-DSC). Further, in situ characterisation and DFT calculations provide insight into the mechanism of the C2 H2 induced fit transformation, binding positions and the nature of host-guest and guest-guest interactions.
Collapse
Affiliation(s)
- Mohana Shivanna
- Department of Chemical SciencesBernal InstituteUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
- Institute for Integrated Cell-Material SciencesKyoto University Institute for Advanced Study, Kyoto UniversityYoshida Ushinomiya-cho, Sakyo-kuKyoto606-8501Japan
| | - Ken‐ichi Otake
- Institute for Integrated Cell-Material SciencesKyoto University Institute for Advanced Study, Kyoto UniversityYoshida Ushinomiya-cho, Sakyo-kuKyoto606-8501Japan
| | - Bai‐Qiao Song
- Department of Chemical SciencesBernal InstituteUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - Lisa M. van Wyk
- Department of Chemistry and Polymer ScienceStellenbosch UniversityMatieland7602South Africa
| | - Qing‐Yuan Yang
- Department of Chemical SciencesBernal InstituteUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - Naveen Kumar
- Department of Chemical SciencesBernal InstituteUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - Wesley K. Feldmann
- Department of Chemistry and Polymer ScienceStellenbosch UniversityMatieland7602South Africa
| | - Tony Pham
- Department of ChemistryUniversity of South Florida4202 East Fowler AvenueTampaFL33620USA
- Department of Chemistry, Biochemistry, and PhysicsThe University of Tampa401 West Kennedy BoulevardTampaFL33606-1490USA
| | - Shanelle Suepaul
- Department of ChemistryUniversity of South Florida4202 East Fowler AvenueTampaFL33620USA
| | - Brian Space
- Department of ChemistryUniversity of South Florida4202 East Fowler AvenueTampaFL33620USA
| | - Leonard J. Barbour
- Department of Chemistry and Polymer ScienceStellenbosch UniversityMatieland7602South Africa
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material SciencesKyoto University Institute for Advanced Study, Kyoto UniversityYoshida Ushinomiya-cho, Sakyo-kuKyoto606-8501Japan
| | - Michael J. Zaworotko
- Department of Chemical SciencesBernal InstituteUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| |
Collapse
|
26
|
Verma G, Ren J, Kumar S, Ma S. New Paradigms in Porous Framework Materials for Acetylene Storage and Separation. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gaurav Verma
- Department of Chemistry University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| | - Junyu Ren
- Department of Chemistry University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| | - Sanjay Kumar
- Department of Chemistry Multani Mal Modi College Patiala 147001, Punjab India
| | - Shengqian Ma
- Department of Chemistry University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| |
Collapse
|
27
|
Verma R, Dhingra G, Malik AK. A Comprehensive Review on Metal Organic Framework Based Preconcentration Strategies for Chromatographic Analysis of Organic Pollutants. Crit Rev Anal Chem 2021; 53:415-441. [PMID: 34435923 DOI: 10.1080/10408347.2021.1964344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organic pollutants (OPs) are of worldwide concern for being hazardous to human existence and natural flora and fauna in view of their contaminating nature, bio-aggregation properties and long range movement abilities in environment. Metal organic frameworks (MOFs) are a new kind of crystalline porous material, composed of metal ions and multi dentate organic ligands with well-defined co-ordination geometry exhibiting promising application respect to adsorptive evacuation of OPs for chromatographic analysis. Applications of MOFs as preconcentration material and column packing material are reviewed. Key analytical characteristics of MOF based preconcentration techniques and coupled chromatographic procedures are summarized in detail. MOF based preconcentration strategies are compared with conventional sorbent based extraction techniques for thorough evaluation of performance of MOF materials.
Collapse
Affiliation(s)
- Rajpal Verma
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | - Gaurav Dhingra
- Punjabi University Constituent College, Patiala, Punjab, India
| | | |
Collapse
|
28
|
Afshariazar F, Morsali A, Sorbara S, Padial NM, Roldan-Molina E, Oltra JE, Colombo V, Navarro JAR. Impact of Pore Size and Defects on the Selective Adsorption of Acetylene in Alkyne-Functionalized Nickel(II)-Pyrazolate-Based MOFs. Chemistry 2021; 27:11837-11844. [PMID: 34114265 PMCID: PMC8457162 DOI: 10.1002/chem.202100821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 11/30/2022]
Abstract
C2H2/CO2 separation is a highly challenging process as a consequence of their similar physicochemical properties. In this work we have explored, by static and dynamic gas sorption techniques and computational modelling, the suitability of a series of two isoreticular robust Ni(II)pyrazolate‐based MOFs, bearing alkyne moieties on the ligand backbones, for C2H2/CO2 separation. The results are consistent with high adsorption capacity and selectivity of the essayed systems towards C2H2 molecules. Furthermore, a post‐synthetic treatment with KOH ethanolic solution gives rise to linker vacancy defects and incorporation of extraframework potassium ions. Creation of defects is responsible for increased adsorption capacity for both gases, however, strong interactions of the cluster basic sites and extraframework potassium cations with CO2 molecules are responsible for a lowering of C2H2 over CO2 selectivity.
Collapse
Affiliation(s)
- Farzaneh Afshariazar
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.,Departamento de Química, Universidad de Granada, Av. Fuentenueva S/N, 18071, Granada, Spain
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Simona Sorbara
- Department of Chemistry, Università degli Studi di Milano, Via Golgi, 19, 20133, Milano, Italy
| | - Natalia M Padial
- Departamento de Química, Universidad de Granada, Av. Fuentenueva S/N, 18071, Granada, Spain
| | - Esther Roldan-Molina
- Departamento de Química, Universidad de Granada, Av. Fuentenueva S/N, 18071, Granada, Spain
| | - J Enrique Oltra
- Departamento de Química, Universidad de Granada, Av. Fuentenueva S/N, 18071, Granada, Spain
| | - Valentina Colombo
- Department of Chemistry, Università degli Studi di Milano, Via Golgi, 19, 20133, Milano, Italy
| | - Jorge A R Navarro
- Departamento de Química, Universidad de Granada, Av. Fuentenueva S/N, 18071, Granada, Spain.,Unidad de Excelencia de Química, Universidad de Granada, Av. Fuentenueva S/N, 18071, Granada, Spain
| |
Collapse
|
29
|
Wang L, Sun W, Zhang Y, Xu N, Krishna R, Hu J, Jiang Y, He Y, Xing H. Interpenetration symmetry control within ultramicroporous robust boron cluster hybrid MOFs for benchmark purification of acetylene from carbon dioxide. Angew Chem Int Ed Engl 2021; 60:22865-22870. [PMID: 34383352 DOI: 10.1002/anie.202107963] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/20/2021] [Indexed: 11/09/2022]
Abstract
The separation of C2H2/CO2 is an important process in industry but challenged by the trade-off of capacity and selectivity owning to their similar physical properties and identical kinetic molecular size. Herein, we report the first example of symmetrically interpenetrated dodecaborate pillared MOF, ZNU-1, for benchmark selective separation of C2H2 from CO2 with a high C2H2 capacity of 76.3 cm3 g-1 and record C2H2/CO2 selectivity of 56.6 (298 K, 1 bar) among all the robust porous materials without open metal sites. Single crystal structure analysis and modelling study indicated that the interpenetration shifting from asymmetric to symmetric mode provided optimal pore chemistry with ideal synergistic "2+2" dihydrogen bonding sites for tight C2H2 trapping. The exceptional separation performance was further evidenced by simulated and experimental breakthroughs with excellent recyclability and high productivity (2.4 mol/kg) of 99.5% purity C2H2 during stepped desorption process.
Collapse
Affiliation(s)
- Lingyao Wang
- Zhejiang Normal University, College of Chemistry and Life Science, CHINA
| | - Wanqi Sun
- Zhejiang Normal University, College of Chemistry and Life Science, CHINA
| | - Yuanbin Zhang
- Zhejiang Normal University, College of Chemistry and Life Science, CHINA
| | - Nuo Xu
- Zhejiang Normal University, College of Chemistry and Life Science, CHINA
| | - Rajamani Krishna
- University of Amsterdam: Universiteit van Amsterdam, Van't Hoff Institute for Molecular Sciences, NETHERLANDS
| | - Jianbo Hu
- Zhejiang University, College of Chemical & Biological Engineering, CHINA
| | - Yunjia Jiang
- Zhejiang Normal University, College of Chemistry and Life Science, CHINA
| | - Yabing He
- Zhejiang Normal University, College of Chemistry and Life Science, CHINA
| | - Huabin Xing
- Zhejiang University, College of Chemical and Biological Engineering, 38 Zheda Road, 310027, Hangzhou, CHINA
| |
Collapse
|
30
|
Shivanna M, Otake K, Song B, Wyk LM, Yang Q, Kumar N, Feldmann WK, Pham T, Suepaul S, Space B, Barbour LJ, Kitagawa S, Zaworotko MJ. Benchmark Acetylene Binding Affinity and Separation through Induced Fit in a Flexible Hybrid Ultramicroporous Material. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohana Shivanna
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland
- Institute for Integrated Cell-Material Sciences Kyoto University Institute for Advanced Study, Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Ken‐ichi Otake
- Institute for Integrated Cell-Material Sciences Kyoto University Institute for Advanced Study, Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Bai‐Qiao Song
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Lisa M. Wyk
- Department of Chemistry and Polymer Science Stellenbosch University Matieland 7602 South Africa
| | - Qing‐Yuan Yang
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Naveen Kumar
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Wesley K. Feldmann
- Department of Chemistry and Polymer Science Stellenbosch University Matieland 7602 South Africa
| | - Tony Pham
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
- Department of Chemistry, Biochemistry, and Physics The University of Tampa 401 West Kennedy Boulevard Tampa FL 33606-1490 USA
| | - Shanelle Suepaul
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Brian Space
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Leonard J. Barbour
- Department of Chemistry and Polymer Science Stellenbosch University Matieland 7602 South Africa
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences Kyoto University Institute for Advanced Study, Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Michael J. Zaworotko
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland
| |
Collapse
|
31
|
Zhang L, Jiang K, Yang L, Li L, Hu E, Yang L, Shao K, Xing H, Cui Y, Yang Y, Li B, Chen B, Qian G. Benchmark C
2
H
2
/CO
2
Separation in an Ultra‐Microporous Metal–Organic Framework via Copper(I)‐Alkynyl Chemistry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102810] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Zheda Road #38 Hangzhou 310027 China
| | - Ke Jiang
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Zheda Road #38 Hangzhou 310027 China
| | - Lifeng Yang
- College of Chemical and Biological Engineering Zhejiang University Zheda Road #38 Hangzhou 310027 China
| | - Libo Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization College of Chemistry and Chemical Engineering Taiyuan University of Technology Taiyuan 030024 Shanxi China
| | - Enlai Hu
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Zheda Road #38 Hangzhou 310027 China
| | - Ling Yang
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization College of Chemistry and Chemical Engineering Taiyuan University of Technology Taiyuan 030024 Shanxi China
| | - Kai Shao
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Zheda Road #38 Hangzhou 310027 China
| | - Huabin Xing
- College of Chemical and Biological Engineering Zhejiang University Zheda Road #38 Hangzhou 310027 China
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Zheda Road #38 Hangzhou 310027 China
| | - Yu Yang
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Zheda Road #38 Hangzhou 310027 China
| | - Bin Li
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Zheda Road #38 Hangzhou 310027 China
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio TX 78249-0698 USA
| | - Guodong Qian
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Zheda Road #38 Hangzhou 310027 China
| |
Collapse
|
32
|
Zhang L, Jiang K, Yang L, Li L, Hu E, Yang L, Shao K, Xing H, Cui Y, Yang Y, Li B, Chen B, Qian G. Benchmark C 2 H 2 /CO 2 Separation in an Ultra-Microporous Metal-Organic Framework via Copper(I)-Alkynyl Chemistry. Angew Chem Int Ed Engl 2021; 60:15995-16002. [PMID: 33977622 DOI: 10.1002/anie.202102810] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/10/2021] [Indexed: 11/11/2022]
Abstract
Separation of acetylene from carbon dioxide remains a daunting challenge because of their very similar molecular sizes and physical properties. We herein report the first example of using copper(I)-alkynyl chemistry within an ultra-microporous MOF (CuI @UiO-66-(COOH)2 ) to achieve ultrahigh C2 H2 /CO2 separation selectivity. The anchored CuI ions on the pore surfaces can specifically and strongly interact with C2 H2 molecule through copper(I)-alkynyl π-complexation and thus rapidly adsorb large amount of C2 H2 at low-pressure region, while effectively reduce CO2 uptake due to the small pore sizes. This material thus exhibits the record high C2 H2 /CO2 selectivity of 185 at ambient conditions, significantly higher than the previous benchmark ZJU-74a (36.5) and ATC-Cu (53.6). Theoretical calculations reveal that the unique π-complexation between CuI and C2 H2 mainly contributes to the ultra-strong C2 H2 binding affinity and record selectivity. The exceptional separation performance was evidenced by breakthrough experiments for C2 H2 /CO2 gas mixtures. This work suggests a new perspective to functionalizing MOFs with copper(I)-alkynyl chemistry for highly selective separation of C2 H2 over CO2 .
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027, China
| | - Ke Jiang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027, China
| | - Lifeng Yang
- College of Chemical and Biological Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027, China
| | - Libo Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Enlai Hu
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027, China
| | - Ling Yang
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Kai Shao
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027, China
| | - Huabin Xing
- College of Chemical and Biological Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027, China
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027, China
| | - Yu Yang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027, China
| | - Bin Li
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0698, USA
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027, China
| |
Collapse
|
33
|
Di Z, Liu C, Pang J, Chen C, Hu F, Yuan D, Wu M, Hong M. Cage-Like Porous Materials with Simultaneous High C 2 H 2 Storage and Excellent C 2 H 2 /CO 2 Separation Performance. Angew Chem Int Ed Engl 2021; 60:10828-10832. [PMID: 33619845 DOI: 10.1002/anie.202101907] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/19/2021] [Indexed: 12/29/2022]
Abstract
Adsorption-based separation is an important technology for C2 H2 purification due to the environmentally friendly and energy-efficient advantage. In addition to the high selectivity of C2 H2 /CO2 , the high uptake of C2 H2 also plays an important role in the separation progress. However, the trade-off between adsorption capacity and separation performance is still in a dilemma. Herein, we report a series of cage-like porous materials named FJI-H8-R (R=Me, Et, n Pr and i Pr) which all have high C2 H2 uptakes at 1 bar and 298 K. Dynamic breakthrough studies show that they all exhibit excellent C2 H2 /CO2 separation performance. Particularly, FJI-H8-Me possesses a long breakthrough time up to 90 min g-1 . Additionally, Grand Canonical Monte Carlo (GCMC) simulation reveals that the suitable pore space and geometry contribute much to the excellent separation performance.
Collapse
Affiliation(s)
- Zhengyi Di
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, CAS Institution, Fuzhou, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Caiping Liu
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, CAS Institution, Fuzhou, 350002, China
| | - Jiandong Pang
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, CAS Institution, Fuzhou, 350002, China
| | - Cheng Chen
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, CAS Institution, Fuzhou, 350002, China
| | - Falu Hu
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, CAS Institution, Fuzhou, 350002, China
| | - Daqiang Yuan
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, CAS Institution, Fuzhou, 350002, China
| | - Mingyan Wu
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, CAS Institution, Fuzhou, 350002, China
| | - Maochun Hong
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, CAS Institution, Fuzhou, 350002, China
| |
Collapse
|
34
|
Di Z, Liu C, Pang J, Chen C, Hu F, Yuan D, Wu M, Hong M. Cage‐Like Porous Materials with Simultaneous High C
2
H
2
Storage and Excellent C
2
H
2
/CO
2
Separation Performance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101907] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhengyi Di
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter CAS Institution Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Caiping Liu
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter CAS Institution Fuzhou 350002 China
| | - Jiandong Pang
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter CAS Institution Fuzhou 350002 China
| | - Cheng Chen
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter CAS Institution Fuzhou 350002 China
| | - Falu Hu
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter CAS Institution Fuzhou 350002 China
| | - Daqiang Yuan
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter CAS Institution Fuzhou 350002 China
| | - Mingyan Wu
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter CAS Institution Fuzhou 350002 China
| | - Maochun Hong
- State Key Lab of Structure Chemistry Fujian Institute of Research on the Structure of Matter CAS Institution Fuzhou 350002 China
| |
Collapse
|