1
|
Royla P, Schwedtmann K, Gomila RM, Frontera A, Weigand JJ. Zwitterionic 2-Phosphaethene-thiolates [(L C)P=CS(L C/P)] + as PCS Building Blocks (L C=NHC, L P=PR 3). Angew Chem Int Ed Engl 2024:e202419502. [PMID: 39559961 DOI: 10.1002/anie.202419502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
The zwitterionic compounds [(LC)P=CS(LC/P)]+ (3+, LC=NHC, LP=PR3), featuring cationic substituents at the phosphorus and carbon atoms, are synthesized as their triflate salts at a multi-gram scale from the reaction of Lewis base adducts of CS2, namely LC/P-CS2 (4), with a combination of [(LCP)4][OTf]4 (1[OTf]4) and Ph3P. The feasibility of using 3+ as PCS building blocks is showcased in their reactions with representative electrophiles (MeOTf) and nucleophiles (MesMgBr, Ph3PCH2), leading to selective functionalization of the PCS core at the S- and P-terminus, respectively. Additionally, it is reported that 3+ can function as ambident nucleophiles with AgOTf (2 equivalents), affording unprecedented linear coordination polymer [Ag2(OTf)3-μ2:κP,κS-((LC)P=CS(PCy3))]+ (6 b), where the PCS moiety acts as a bridging ligand in transition metal complexes for the first time. Reduction of 3+ facilitates the cleavage of the P- and C-bound substituents leading to the formation of the [PCS]- anion. Moreover, cycloaddition reactions of 3+ with 1[OTf]4 are shown to selectively yield five- and eight-membered polyphosphorus heterocycles. Preliminary results suggest the possibility of activating the C-S bond in [(LC)P=CS(LC)]+, resulting in the formation of [(LC)P=C(LC)-P(LC)][OTf]2, 12[OTf]2, which may serve as a synthon for the PCP unit in future studies.
Collapse
Affiliation(s)
- Philipp Royla
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Kai Schwedtmann
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Rosa M Gomila
- Department of Chemistry, Universitat de Illes Balears, 07122, Palma de Mallorca, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de Illes Balears, 07122, Palma de Mallorca, Spain
| | - Jan J Weigand
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
2
|
Le Corre G, Gamboa‐Carballo JJ, Li Z, Grützmacher H. Cyano(triphenylsilyl)phosphanide as a Building Block for P,C,N Conjugated Molecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Grégoire Le Corre
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
| | - Juan José Gamboa‐Carballo
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
- Higher Institute of Technologies and Applied Sciences (InSTEC) University of Havana Ave. S Allende 1110 10600 Havana Cuba
| | - Zhongshu Li
- Lehn Institute of Functional Materials (LIFM) School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
| |
Collapse
|
3
|
Le Corre G, Gamboa‐Carballo JJ, Li Z, Grützmacher H. Cyano(triphenylsilyl)phosphanide as a Building Block for P,C,N Conjugated Molecules. Angew Chem Int Ed Engl 2021; 60:24817-24822. [PMID: 34463413 PMCID: PMC9297940 DOI: 10.1002/anie.202108295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/16/2021] [Indexed: 11/29/2022]
Abstract
The cyano(triphenylsilyl)phosphanide anion was prepared as a sodium salt from 2-phosphaethynolate. The electronic structure of this new cyano(silyl)phosphanide was studied via computational methods and its reactivity investigated using various electrophiles and Lewis acids, demonstrating its P- and N-nucleophilicity. The ambident reactivity is in agreement with computations. The silyl group also shows lability and therefore the cyano(silyl)phosphanide can be considered as a phosphacyanamide synthon, [PCN]2- , and serves as building block for the transfer of a PCN moiety.
Collapse
Affiliation(s)
- Grégoire Le Corre
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog Weg 1Hönggerberg8093 ZürichSwitzerland
| | - Juan José Gamboa‐Carballo
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog Weg 1Hönggerberg8093 ZürichSwitzerland
- Higher Institute of Technologies and Applied Sciences (InSTEC)University of HavanaAve. S Allende 111010600HavanaCuba
| | - Zhongshu Li
- Lehn Institute of Functional Materials (LIFM)School of ChemistrySun Yat-Sen UniversityGuangzhou510275China
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog Weg 1Hönggerberg8093 ZürichSwitzerland
| |
Collapse
|
4
|
Reinholdt A, Jafari MG, Sandoval-Pauker C, Ballestero-Martínez E, Gau MR, Driess M, Pinter B, Mindiola DJ. Phosphorus and Arsenic Atom Transfer to Isocyanides to Form π-Backbonding Cyanophosphide and Cyanoarsenide Titanium Complexes. Angew Chem Int Ed Engl 2021; 60:17595-17600. [PMID: 34192399 DOI: 10.1002/anie.202104688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/07/2022]
Abstract
Decarbonylation along with E atom transfer from Na(OCE) (E=P, As) to an isocyanide coordinated to the tetrahedral TiII complex [(TptBu,Me )TiCl], yielded the [(TptBu,Me )Ti(η3 -ECNAd)] species (Ad=1-adamantyl, TptBu,Me- =hydrotris(3-tert-butyl-5-methylpyrazol-1-yl)borate). In the case of E=P, the cyanophosphide ligand displays nucleophilic reactivity toward Al(CH3 )3 ; moreover, its bent geometry hints to a reduced Ad-NCP3- resonance contributor. The analogous and rarer mono-substituted cyanoarsenide ligand, Ad-NCAs3- , shows the same unprecedented coordination mode but with shortening of the N=C bond. As opposed to TiII , VII fails to promote P atom transfer to AdNC, yielding instead [(TptBu,Me )V(OCP)(CNAd)]. Theoretical studies revealed the rare ECNAd moieties to be stabilized by π-backbonding interactions with the former TiII ion, and their assembly to most likely involve a concerted E atom transfer between Ti-bound OCE- to AdNC ligands when studying the reaction coordinate for E=P.
Collapse
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | | | - Ernesto Ballestero-Martínez
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Balazs Pinter
- Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso, 2390123, Chile
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
5
|
Reinholdt A, Jafari MG, Sandoval‐Pauker C, Ballestero‐Martínez E, Gau MR, Driess M, Pinter B, Mindiola DJ. Phosphorus and Arsenic Atom Transfer to Isocyanides to Form π‐Backbonding Cyanophosphide and Cyanoarsenide Titanium Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Mehrafshan G. Jafari
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | | | - Ernesto Ballestero‐Martínez
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Michael R. Gau
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Balazs Pinter
- Department of Chemistry Universidad Técnica Federico Santa María Valparaíso 2390123 Chile
| | - Daniel J. Mindiola
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| |
Collapse
|