1
|
Wang M, Song Z, Shen Q, Zeng H, Su X, Sun F, Dong W, Xing D, Zhou G. Simultaneous enhanced antibiotic pollutants removal and sustained permeability of the membrane involving CoFe 2O 4/MoS 2 catalyst initiated with simple H 2O 2 backwashing. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135086. [PMID: 39024762 DOI: 10.1016/j.jhazmat.2024.135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Membranes for wastewater treatment should ideally exhibit sustainable high permeate production, enhanced pollutant removal, and intrinsic physical rejection. In this study, CoFe2O4/MoS2 serves as a non-homogeneous phase catalyst; it is combined with polyether sulfone membranes via liquid-induced phase separation to simultaneously sustain membrane permeability and enhance antibiotic pollutant degradation. The prepared catalytic membranes have higher pure water flux (329.34 L m-2 h-1) than pristine polyethersulfone membranes (219.03 L m-2 h-1), as well as higher mean pore size, porosity, and hydrophilicity. Under a moderate transmembrane pressure (0.05 MPa), tetracycline (TC) in synthetic and real wastewater was degraded by the optimal catalytic membrane by 72.7 % and 91.2 %, respectively. Owing to the generation of the reactive oxygen species (ROS) during the Fenton-like reaction process, the catalytic membrane could exclude the natural organics during the H2O2 backwash step and selectively promote fouling degradation in the membrane channel. The irreversible fouling ratio of the catalyzed membrane was significantly reduced, and the flux recovery rate increased by up to 91.6 %. A potential catalytic mechanism and TC degradation pathways were proposed. This study offers valuable insights for designing catalytic membranes with enhanced filtration performance.
Collapse
Affiliation(s)
- Mingming Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zi Song
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qi Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haojie Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiaoli Su
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wenyi Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dingyu Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guofei Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
2
|
Gu CH, Wang S, Zhang AY, Liu C, Jiang J, Yu HQ. Slow-release synthesis of Cu single-atom catalysts with the optimized geometric structure and density of state distribution for Fenton-like catalysis. Proc Natl Acad Sci U S A 2023; 120:e2311585120. [PMID: 37844255 PMCID: PMC10614618 DOI: 10.1073/pnas.2311585120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023] Open
Abstract
Single-atom Fenton-like catalysis has attracted significant attention, yet the quest for controllable synthesis of single-atom catalysts (SACs) with modulation of electron configuration is driven by the current disadvantages of poor activity, low selectivity, narrow pH range, and ambiguous structure-performance relationship. Herein, we devised an innovative strategy, the slow-release synthesis, to fabricate superior Cu SACs by facilitating the dynamic equilibrium between metal precursor supply and anchoring site formation. In this strategy, the dynamics of anchoring site formation, metal precursor release, and their binding reaction kinetics were regulated. Bolstered by harmoniously aligned dynamics, the selective and specific monatomic binding reactions were ensured to refine controllable SACs synthesis with well-defined structure-reactivity relationship. A copious quantity of monatomic dispersed metal became deposited on the C3N4/montmorillonite (MMT) interface and surface with accessible exposure due to the convenient mass transfer within ordered MMT. The slow-release effect facilitated the generation of targeted high-quality sites by equilibrating the supply and demand of the metal precursor and anchoring site and improved the utilization ratio of metal precursors. An excellent Fenton-like reactivity for contaminant degradation was achieved by the Cu1/C3N4/MMT with diminished toxic Cu liberation. Also, the selective ·OH-mediated reaction mechanism was elucidated. Our findings provide a strategy for regulating the intractable anchoring events and optimizing the microenvironment of the monatomic metal center to synthesize superior SACs.
Collapse
Affiliation(s)
- Chao-Hai Gu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Song Wang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Ai-Yong Zhang
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
- Anhui Engineering Laboratory for Rural Water Environment and Resources, School of Civil Engineering, Hefei University of Technology, Hefei230009, China
| | - Chang Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Han-Qing Yu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
3
|
Sun G, Liu D, Li M, Tao S, Guan Z, Chen Y, Liu S, Du Q, Guo H, Yuan X, Zhang X, Zhu H, Liu B, Pan Y. Atomic coordination structural dynamic evolution of single-atom Mo catalyst for promoting H 2 activation in slurry phase hydrocracking. Sci Bull (Beijing) 2023; 68:503-515. [PMID: 36858839 DOI: 10.1016/j.scib.2023.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Development of efficient catalysts with high atomic utilization and turnover frequency (TOF) for H2 activation in slurry phase hydrocracking (SPHC) is crucial for the conversion of vacuum residue (VR). Herein, for the first time, we reported a robust and stable single atoms (SAs) Mo catalyst through a polymerization-pyrolysis-in situ sulfurization strategy for activating H2 in SPHC of VR. An interesting atomic coordination structural dynamic evolution of Mo active sites was discovered. During hydrocracking of VR, the O atoms that coordinated with Mo were gradually replaced by S atoms, which led to the O/S exchange process. The coordination structure of the Mo SAs changed from pre-reaction Mo-O3S1 to post-reaction Mo-O1S3 coordination configurations, promoting the efficient homolytic cleavage activation of H2 into H radical species effectively. The evolved Mo SAs catalyst exhibited robust catalytic hydrogenation activity with the per pass conversion of VR of 65 wt%, product yield of liquid oils of 93 wt%, coke content of only 0.63 wt%, TOF calculated for total metals up to 0.35 s-1, and good cyclic stability. Theoretical calculation reveals that the significant variation of occupied Mo 4d states before and after H2 interaction has a direct bearing on the dynamic evolution of Mo SAs catalyst structure. The lower d-band center of Mo-O1S3 site indicates that atomic H diffusion is easy, which is conducive to catalytic hydrogenation. The finding of this study is of great significance to the development of high atom economy catalysts for the industrial application of heavy oil upgrading technology.
Collapse
Affiliation(s)
- Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongyuan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Zekun Guan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yanfei Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Shihuan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Qingzhou Du
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Han Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Xinyue Yuan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Xinying Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Houyu Zhu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Bin Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
4
|
Liu H, Huang C, Wang P, Huang S, Yang X, Xu H, Zhu J, Ling D, Feng C, Liu Z. A novel Fe/Mo co-catalyzed graphene-based nanocomposite to activate peroxymonosulfate for highly efficient degradation of organic pollutants. ENVIRONMENTAL RESEARCH 2022; 215:114233. [PMID: 36058268 DOI: 10.1016/j.envres.2022.114233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
A novel 3D α-FeOOH@MoS2/rGO nanocomposite was successfully fabricated by a simple in situ hydrothermal method. It is a highly efficient heterogeneous catalyst in activation of peroxymonosulfate (PMS) for rapid degradation of rhodamine B (RhB), with 99.9% of RhB removed within 20 min. The introduction of rGO contributes to uniform dispersion and sufficient contact of α-FeOOH and MoS2 nanosheets. Highly active Mo(IV) enhances the reduction of Fe(III), improves Fe(III)/Fe(II) conversion and promotes the generation of O21, which ensures an improved catalytic activity. MoS2/rGO hybrid can effectively solve the problem of material reunion and make α-FeOOH exhibit excellent catalytic performance. The α-FeOOH@MoS2-rGO/PMS system is a co-catalytic system based on the active components of α-FeOOH and MoS2. The main reactive oxygen species in the α-FeOOH@MoS2-rGO/PMS system are O21, SO4.- and ⋅O2-, which contribute to a high reactivity over a wide range of pH (5-9). Besides, this system is highly resistant to anions (Cl-, SO42-) and natural organic matter (humic acid), and can be widely used for degradation of common organic pollutants. The α-FeOOH@MoS2/rGO is a promising Fenton-like catalyst for refractory organic wastewater treatment.
Collapse
Affiliation(s)
- Hao Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Su Huang
- School of Business Administration, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Xiong Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Haiyin Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Dingxun Ling
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chonglin Feng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA.
| |
Collapse
|
5
|
Activation of hydrogen peroxide by molybdenum disulfide as Fenton-like catalyst and cocatalyst: Phase-dependent catalytic performance and degradation mechanism. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Zhang B, Liu F, Nie C, Hou Y, Tong M. Photocatalytic degradation of paracetamol and bisphenol A by chitosan supported covalent organic framework thin film with visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128966. [PMID: 35472551 DOI: 10.1016/j.jhazmat.2022.128966] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/09/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Covalent Organic Frameworks (COFs) have attracted extensive attention for the photocatalytic degradation of emerging organic contaminants. The difficulty in separation and recovery after use yet would hinder the practical application of COFs in powder form. In present study, COFs in film form were fabricated via using chitosan as the film-substrate to support COFs (CSCF). We found that CSCF could effectively degrade two types of emerging organic contaminants under visible light irradiation. Particularly, CSCF could effectively degrade 99.8% of paracetamol (PCT) and 94.0% of bisphenol A (BPA) within 180 min under visible light irradiation. •O2- and h+ played dominant roles during the photocatalytic degradation process. Hydroxylation and cleavage were the main degradation processes. CSCF exhibited good photocatalytic degradation performance in a broad range of ionic strengths, in the presence of common coexisting ions including Cl-, NO3- and SO42-, in a wide range of pH (5-11), and in real water samples including tap water, river water and lake water. Moreover, CSCF could be easily collected after use and exhibited excellent degradation performance in five successive cycles. CSCF has potential applications to treat water with either PCT or BPA contamination. This study provided a new insight into the practical application of COFs.
Collapse
Affiliation(s)
- Boaiqi Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Chenyi Nie
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
7
|
Song C, Zhan Q, Liu F, Wang C, Li H, Wang X, Guo X, Cheng Y, Sun W, Wang L, Qian J, Pan B. Overturned Loading of Inert CeO 2 to Active Co 3 O 4 for Unusually Improved Catalytic Activity in Fenton-Like Reactions. Angew Chem Int Ed Engl 2022; 61:e202200406. [PMID: 35128779 DOI: 10.1002/anie.202200406] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 11/09/2022]
Abstract
In the past decades, numerous efforts have been devoted to improving the catalytic activity of nanocomposites by either exposing more active sites or regulating the interaction between the support and nanoparticles while keeping the structure of the active sites unchanged. Here, we report the fabrication of a Co3 O4 -CeO2 nanocomposite via overturning the loading direction, i.e., loading an inert CeO2 support onto active Co3 O4 nanoparticles. The resultant catalyst exhibits unexpectedly higher activity and stability in peroxymonosulfate-based Fenton-like reactions than its analog prepared by the traditional impregnation method. Abundant oxygen vacancies (Ov with a Co⋅⋅⋅Ov ⋅⋅⋅Ce structure instead of Co⋅⋅⋅Ov ) are generated as new active sites to facilitate the cleavage of the peroxide bond to produce SO4 .- and accelerate the rate-limiting step, i.e., the desorption of SO4 .- , affording improved activity. This strategy is a new direction for boosting the catalytic activity of nanocomposite catalysts in various scenarios, including environmental remediation and energy applications.
Collapse
Affiliation(s)
- Chunli Song
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Qing Zhan
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Fei Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Chuan Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Xuan Wang
- Key Lab of Mesoscopic Chemistry MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xuefeng Guo
- Key Lab of Mesoscopic Chemistry MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yingchun Cheng
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Wei Sun
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Li Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China.,Research Center for Environmental Nanotechnology (ReCENT), School of Environment, State Key Laboratory of Environmental Pollution and Resources Reuse, Nanjing University, Nanjing, 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, State Key Laboratory of Environmental Pollution and Resources Reuse, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
8
|
Overturned Loading of Inert CeO
2
to Active Co
3
O
4
for Unusually Improved Catalytic Activity in Fenton‐Like Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Jin L, Liu F, Wu JH, Ma SJ, Li JH, Tian YJ, Liu X, Lin ZX. The construction of a palladium–hydrogen accelerated catalytic Fenton system enhanced by UiO-66(Zr). NEW J CHEM 2022. [DOI: 10.1039/d1nj04550d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The introduction of H2 and Pd/UiO-66(Zr) accelerated the FeII/FeIII cycle and led to higher contaminant degradation using only a trace level of FeII in several reaction cycles.
Collapse
Affiliation(s)
- Long Jin
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Feng Liu
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Jian-hua Wu
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - San-Jian Ma
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
- Suzhou Cott Environmental Protection Co., Ltd, Suzhou, Jiangsu Province 215156, China
| | - Juan-Hong Li
- Changzhou Vocational Institute of Engineering, Changzhou, Jiangsu Province 213164, China
| | - Yong-Jing Tian
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Xin Liu
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Zi-Xia Lin
- Testing Center, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| |
Collapse
|
10
|
Qiu W, Gao M, Chen Q, Zheng A, Shi Y, Liu X, Li J, Dai G, Hu Y, Lin Z. Acceleration of Fe
III
/Fe
II
cycle enhanced by Pd/MOF‐808(Zr) composite in hydrogen promotion Fenton system for sulfamethazine elimination. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen‐Jing Qiu
- Tianping College of Suzhou University of Science and Technology Suzhou China
| | - Ming‐Wu Gao
- Tianping College of Suzhou University of Science and Technology Suzhou China
| | - Qi Chen
- Tianping College of Suzhou University of Science and Technology Suzhou China
| | - Ao Zheng
- Tianping College of Suzhou University of Science and Technology Suzhou China
| | - Yi‐Jia Shi
- Tianping College of Suzhou University of Science and Technology Suzhou China
| | - Xin Liu
- Tianping College of Suzhou University of Science and Technology Suzhou China
- Institute of Environmental Protection Application Technology, Institute of Solid Waste Pollution Control and Resource Reuse, School of Environmental Science and Engineering Suzhou University of Science and Technology Suzhou China
| | - Juan‐Hong Li
- Changzhou Vocational Institute of Engineering Changzhou China
| | - Guo‐Liang Dai
- School of Chemistry and Life Science Suzhou University of Science and Technology Suzhou China
| | - Yang Hu
- Suzhou Cott Environmental Protection Co., Ltd. Suzhou China
| | - Zi‐Xia Lin
- Testing Center Yangzhou University Yangzhou China
| |
Collapse
|
11
|
Abdelfatah A, Fawzy M, Eltaweil AS, El-Khouly ME. Green Synthesis of Nano-Zero-Valent Iron Using Ricinus Communis Seeds Extract: Characterization and Application in the Treatment of Methylene Blue-Polluted Water. ACS OMEGA 2021; 6:25397-25411. [PMID: 34632198 PMCID: PMC8495865 DOI: 10.1021/acsomega.1c03355] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 05/15/2023]
Abstract
In this study, the removal of methylene blue dye (MB) from aqueous solution was examined using a novel green adsorbent to overcome the obstacles encountered in chemical methods. Ricinus communis (RC) aqueous seeds extract was herein used as a reducing and capping agent to synthesize a novel nano-zero-valent iron (RC-nZVI) for the adsorption of harmful MB. Structural and morphological characterization of the synthesized RC-nZVI were performed using several techniques, e.g., steady-state absorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and zeta potential. The maximum efficiency of the removal was 96.8% at pH 6 and 25 °C. According to the kinetics study results, the adsorption process obeys the pseudo-first-order model. The experimental equilibrium data were fitted to the Freundlich isotherm model, the maximum adsorption capacity reached was 61.37 mg·g-1, and the equilibrium parameters were determined. The synthesized RC-nZVI possesses good reusability and can be considered as a potential economic and environmentally friendly adsorbent.
Collapse
Affiliation(s)
- Ahmed
M. Abdelfatah
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Manal Fawzy
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Abdelazeem S. Eltaweil
- Department
of Chemistry, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Mohamed E. El-Khouly
- Institute
of Basic and Applied Sciences, Egypt-Japan University of Science and
Technology (E-JUST), New Borg
El-Arab, Alexandria 21934, Egypt
| |
Collapse
|
12
|
Zhang L, Jiang X, Zhong Z, Tian L, Sun Q, Cui Y, Lu X, Zou J, Luo S. Carbon Nitride Supported High‐Loading Fe Single‐Atom Catalyst for Activation of Peroxymonosulfate to Generate
1
O
2
with 100 % Selectivity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Long‐Shuai Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
| | - Xun‐Heng Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
| | - Zi‐Ai Zhong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
| | - Lei Tian
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
| | - Yi‐Tao Cui
- SANKA High Technology Co. Ltd. 90-1 Kurimachi, Shingu-machi, Tatsuno Hyogo 679-5155 Japan
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surface Xiamen University Xiamen Fujian 361005 P. R. China
| | - Jian‐Ping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
| | - Sheng‐Lian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China
| |
Collapse
|
13
|
Zhang LS, Jiang XH, Zhong ZA, Tian L, Sun Q, Cui YT, Lu X, Zou JP, Luo SL. Carbon Nitride Supported High-Loading Fe Single-Atom Catalyst for Activating of Peroxymonosulfate to Generate 1 O 2 with 100 % Selectivity. Angew Chem Int Ed Engl 2021; 60:21751-21755. [PMID: 34346139 DOI: 10.1002/anie.202109488] [Citation(s) in RCA: 275] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 11/06/2022]
Abstract
Singlet oxygen (1 O2 ) is an excellent active species for the selective degradation of organic pollutions. However, it is difficult to achieve high efficiency and selectivity for the generation of 1 O2 . In this work, we develop a graphitic carbon nitride supported Fe single-atoms catalyst (Fe1 /CN) containing highly uniform Fe-N4 active sites with a high Fe loading of 11.2 wt %. The Fe1 /CN achieves generation of 100 % 1 O2 by activating peroxymonosulfate (PMS), which shows an ultrahigh p-chlorophenol degradation efficiency. Density functional theory calculations results demonstrate that in contrast to Co and Ni single-atom sites, the Fe-N4 sites in Fe1 /CN adsorb the terminal O of PMS, which can facilitate the oxidization of PMS to form SO5 .- , and thereafter efficiently generate 1 O2 with 100 % selectivity. In addition, the Fe1 /CN exhibits strong resistance to inorganic ions, natural organic matter, and pH value during the degradation of organic pollutants in the presence of PMS. This work develops a novel catalyst for the 100 % selective production of 1 O2 for highly selective and efficient degradation of pollutants.
Collapse
Affiliation(s)
- Long-Shuai Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Xun-Heng Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Zi-Ai Zhong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Lei Tian
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Yi-Tao Cui
- SANKA High Technology Co. Ltd. 90-1, Kurimachi, Shingu-machi, Tatsuno, Hyogo, 679-5155, Japan
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Jian-Ping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Sheng-Lian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| |
Collapse
|