1
|
Tamura AM, Stewart KA, Young JB, Wei NB, Cantor AJ, Sumerlin BS. Selective Depolymerization for Sculpting Polymethacrylate Molecular Weight Distributions. J Am Chem Soc 2025. [PMID: 39879111 DOI: 10.1021/jacs.4c15553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Chain-end reactivation of polymethacrylates generated by reversible-deactivation radical polymerization (RDRP) has emerged as a powerful tool for triggering depolymerization at significantly milder temperatures than those traditionally employed. In this study, we demonstrate how the facile depolymerization of poly(butyl methacrylate) (PBMA) can be leveraged to selectively skew the molecular weight distribution (MWD) and predictably alter the viscoelastic properties of blended PBMA mixtures. By mixing polymers with thermally active chain ends with polymers of different molecular weights and inactive chain ends, the MWD of the blends can be skewed to be high or low by selective depolymerization. This approach leads to the counterintuitive principle of the "destructive strengthening" of a material. Finally, we demonstrate, as a proof of concept, the encryption of information within polymer mixtures by linking Morse code with the MWDs before and after selective depolymerization, allowing for the encoding of data within blends of synthetic macromolecules.
Collapse
Affiliation(s)
- Ariana M Tamura
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kevin A Stewart
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - James B Young
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Nathan B Wei
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Alexander J Cantor
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Luo X, Wan J, Meckbach N, Strehmel V, Li S, Chen Z, Strehmel B. A Porphyrin-Based Organic Network Comprising Sustainable Carbon Dots for Photopolymerization. Angew Chem Int Ed Engl 2022; 61:e202208180. [PMID: 35882626 PMCID: PMC9826160 DOI: 10.1002/anie.202208180] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 01/11/2023]
Abstract
Sustainable carbon dots (CDs) based on furfuraldehyde (F-CD) resulted in a photosensitive material after pursuing the Alder-Longo reaction. The porphyrin moiety formed connects the F-CDs in a covalent organic network. This heterogeneous material (P-CD) was characterized by XPS indicating incorporation of the respective C, N and O moieties. Time resolved fluorescence including global analysis showed contribution of three linked components to the overall dynamics of the excited state. Electrochemical and photonic properties of this heterogeneous material facilitated photopolymerization in a photo-ATRP setup where either CuBr2 /TPMA, FeBr3 /Br- or a metal free reaction setup activated controlled polymerization. Chain extension experiments worked in all three cases showing end group fidelity for activation of controlled block copolymerization using MMA and styrene as monomers. Traditional radical polymerization using a diaryl iodonium salt as co-initiator failed.
Collapse
Affiliation(s)
- Xiongfei Luo
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
- Department of ChemistryInstitute for Coatings and Surface ChemistryNiederrhein University of Applied SciencesAdlerstr. 147798KrefeldGermany
| | - Jianyong Wan
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Nicolai Meckbach
- Department of ChemistryInstitute for Coatings and Surface ChemistryNiederrhein University of Applied SciencesAdlerstr. 147798KrefeldGermany
| | - Veronika Strehmel
- Department of ChemistryInstitute for Coatings and Surface ChemistryNiederrhein University of Applied SciencesAdlerstr. 147798KrefeldGermany
| | - Shujun Li
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Zhijun Chen
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Bernd Strehmel
- Department of ChemistryInstitute for Coatings and Surface ChemistryNiederrhein University of Applied SciencesAdlerstr. 147798KrefeldGermany
| |
Collapse
|
3
|
Porphyrin Based Organic Network Comprising Sustainable Carbon Dots for Photopolymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|